Update app.py
Browse files
app.py
CHANGED
@@ -237,7 +237,7 @@ def compare_models(
|
|
237 |
Args:
|
238 |
prompt (str): The input prompt for text generation.
|
239 |
temperature (float): Sampling temperature.
|
240 |
-
top_p (float):
|
241 |
min_new_tokens (int): Minimum number of new tokens to generate.
|
242 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
243 |
|
@@ -385,7 +385,7 @@ def chat_rag(
|
|
385 |
user_input (str): The user's chat input.
|
386 |
history (list[list[str]]): The chat history.
|
387 |
temperature (float): Sampling temperature.
|
388 |
-
top_p (float):
|
389 |
min_new_tokens (int): Minimum number of new tokens to generate.
|
390 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
391 |
|
@@ -429,27 +429,37 @@ with gr.Blocks() as demo:
|
|
429 |
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
|
430 |
gr.Markdown("---")
|
431 |
|
432 |
-
gr.TabbedInterface(
|
433 |
[
|
434 |
gr.Interface(
|
435 |
fn=finetune_small_subset,
|
436 |
inputs=None,
|
437 |
outputs=gr.Textbox(label="Fine-tuning Status", interactive=False),
|
438 |
title="⚙️ Fine-tuning (Optional)",
|
439 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
),
|
441 |
gr.Interface(
|
442 |
fn=predict,
|
443 |
inputs=[
|
444 |
gr.Textbox(lines=3, label="Input Prompt", placeholder="Enter your prompt here..."),
|
445 |
-
gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature (Creativity)"),
|
446 |
-
gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p (Sampling Nucleus)"),
|
447 |
-
gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens"),
|
448 |
-
gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
|
449 |
],
|
450 |
outputs=gr.Textbox(label="Custom R1 Output", lines=8, interactive=False),
|
451 |
title="✍️ Direct Generation",
|
452 |
-
description="
|
|
|
|
|
|
|
|
|
453 |
),
|
454 |
gr.Interface(
|
455 |
fn=compare_models,
|
@@ -465,16 +475,24 @@ with gr.Blocks() as demo:
|
|
465 |
gr.Textbox(label="Official R1 Output", lines=6, interactive=False)
|
466 |
],
|
467 |
title="🆚 Model Comparison",
|
468 |
-
description="
|
|
|
|
|
|
|
|
|
469 |
),
|
470 |
gr.ChatInterface(
|
471 |
fn=chat_rag,
|
472 |
chatbot=gr.Chatbot(label="RAG Chatbot"),
|
473 |
textbox=gr.Textbox(placeholder="Ask a question to the RAG Chatbot...", lines=2, show_label=False),
|
474 |
title="💬 RAG Chat",
|
475 |
-
description="
|
|
|
|
|
|
|
|
|
476 |
)
|
477 |
]
|
478 |
-
)
|
479 |
|
480 |
demo.launch()
|
|
|
237 |
Args:
|
238 |
prompt (str): The input prompt for text generation.
|
239 |
temperature (float): Sampling temperature.
|
240 |
+
top_p (float): Sampling top-p.
|
241 |
min_new_tokens (int): Minimum number of new tokens to generate.
|
242 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
243 |
|
|
|
385 |
user_input (str): The user's chat input.
|
386 |
history (list[list[str]]): The chat history.
|
387 |
temperature (float): Sampling temperature.
|
388 |
+
top_p (float): Sampling top-p.
|
389 |
min_new_tokens (int): Minimum number of new tokens to generate.
|
390 |
max_new_tokens (int): Maximum number of new tokens to generate.
|
391 |
|
|
|
429 |
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
|
430 |
gr.Markdown("---")
|
431 |
|
432 |
+
with gr.TabbedInterface(
|
433 |
[
|
434 |
gr.Interface(
|
435 |
fn=finetune_small_subset,
|
436 |
inputs=None,
|
437 |
outputs=gr.Textbox(label="Fine-tuning Status", interactive=False),
|
438 |
title="⚙️ Fine-tuning (Optional)",
|
439 |
+
description="""
|
440 |
+
### Optional Fine-tuning
|
441 |
+
This section allows you to fine-tune the custom R1 model on a small subset of the ServiceNow dataset.
|
442 |
+
This step is **optional** but can potentially improve the model's performance on ServiceNow-related tasks.
|
443 |
+
|
444 |
+
**Note:** This process may take up to 5 minutes. Click the button below to start fine-tuning.
|
445 |
+
"""
|
446 |
),
|
447 |
gr.Interface(
|
448 |
fn=predict,
|
449 |
inputs=[
|
450 |
gr.Textbox(lines=3, label="Input Prompt", placeholder="Enter your prompt here..."),
|
451 |
+
gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature (Creativity)", info="Adjust the randomness of the output. Higher values mean more creative but potentially less coherent text."),
|
452 |
+
gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p (Sampling Nucleus)", info="Controls the sampling pool. Lower values make the output more focused."),
|
453 |
+
gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens", info="Minimum number of tokens to generate."),
|
454 |
+
gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens", info="Maximum number of tokens to generate.")
|
455 |
],
|
456 |
outputs=gr.Textbox(label="Custom R1 Output", lines=8, interactive=False),
|
457 |
title="✍️ Direct Generation",
|
458 |
+
description="""
|
459 |
+
### Direct Text Generation
|
460 |
+
Enter a prompt to generate text directly using the custom R1 model.
|
461 |
+
This is standard text generation without retrieval augmentation.
|
462 |
+
"""
|
463 |
),
|
464 |
gr.Interface(
|
465 |
fn=compare_models,
|
|
|
475 |
gr.Textbox(label="Official R1 Output", lines=6, interactive=False)
|
476 |
],
|
477 |
title="🆚 Model Comparison",
|
478 |
+
description="""
|
479 |
+
### Model Output Comparison
|
480 |
+
Enter a prompt to compare the text generation of your fine-tuned custom R1 model with the official DeepSeek-R1-Distill-Llama-8B model.
|
481 |
+
This allows you to see the differences in output between the two models.
|
482 |
+
"""
|
483 |
),
|
484 |
gr.ChatInterface(
|
485 |
fn=chat_rag,
|
486 |
chatbot=gr.Chatbot(label="RAG Chatbot"),
|
487 |
textbox=gr.Textbox(placeholder="Ask a question to the RAG Chatbot...", lines=2, show_label=False),
|
488 |
title="💬 RAG Chat",
|
489 |
+
description="""
|
490 |
+
### RAG-Enhanced Chat with Custom R1
|
491 |
+
Chat with the custom R1 model, enhanced with retrieval-augmented generation (RAG).
|
492 |
+
The model retrieves relevant information to provide more informed and context-aware responses.
|
493 |
+
"""
|
494 |
)
|
495 |
]
|
496 |
+
).render() # Added .render() here for potential future theme application
|
497 |
|
498 |
demo.launch()
|