File size: 7,073 Bytes
5755412 f82c314 eccd8f6 f82c314 b446d41 f82c314 b26485f f82c314 b26485f f82c314 b26485f f82c314 b26485f f82c314 b26485f eccd8f6 5755412 eccd8f6 f82c314 eccd8f6 f82c314 eccd8f6 b26485f f82c314 b26485f f82c314 b446d41 f82c314 b26485f f82c314 b26485f f82c314 b26485f eccd8f6 f82c314 b446d41 f82c314 b26485f f82c314 eccd8f6 5755412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import spaces
import torch
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
pipeline
)
#############################################################
# ZeroGPU REQUIREMENT:
# - No CUDA references at global scope.
# - All GPU usage within @spaces.GPU(...) functions.
#############################################################
# We'll do a small subset of WikiText-2 for demonstration.
# Real finetuning on the entire dataset likely exceeds typical ZeroGPU time.
NUM_EXAMPLES = 1000 # or fewer to keep it quick
# We'll store the "inference pipeline" after training
TEXT_PIPELINE = None
@spaces.GPU(duration=300) # up to 5 minutes for a mini-finetraining
def finetune_small_subset():
"""
1) Loads the model & tokenizer from 'wuhp/myr1'.
2) Loads a small subset of WikiText-2 for language modeling.
3) Runs a quick 1-epoch finetune.
4) Saves model + tokenizer to 'finetuned_myr1'.
5) Loads the newly trained model back into a text-generation pipeline.
Returns a success message.
"""
# -------------------------------
# A) Load a small dataset
# -------------------------------
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
# Keep only a subset so we don't exceed time.
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
def format_and_tokenize(ex):
# For standard LM, we just treat each line as text
return tokenizer(ex["text"], truncation=True, max_length=512)
# We'll define them once we have the tokenizer below.
# -------------------------------
# B) Load config, tokenizer, model from HF
# (trust_remote_code = True for custom modeling_deepseek)
# -------------------------------
config = AutoConfig.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True
)
# -------------------------------
# C) Process dataset
# -------------------------------
ds = ds.map(format_and_tokenize, batched=True, remove_columns=["text"])
ds.set_format("torch")
# -------------------------------
# D) Data Collator
# -------------------------------
collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# -------------------------------
# E) Training Arguments + Trainer
# -------------------------------
training_args = TrainingArguments(
output_dir="finetuned_myr1",
num_train_epochs=1, # 1 epoch for demonstration
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
logging_steps=10,
save_steps=999999, # effectively "don't save mid-training"
save_total_limit=1,
fp16=torch.cuda.is_available(),
# ZeroGPU ephemeral environment => no real advantage to push_to_hub
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=ds,
data_collator=collator,
)
# -------------------------------
# F) Train
# -------------------------------
trainer.train()
# -------------------------------
# G) Save local checkpoint
# -------------------------------
trainer.save_model("finetuned_myr1")
tokenizer.save_pretrained("finetuned_myr1")
# -------------------------------
# H) Reload the newly finetuned model as a pipeline
# -------------------------------
# (We do this so we can do inference in the same GPU session)
# However, if the pipeline is used *after* this function returns,
# we might need to re-load in a separate function call.
finetuned_model = AutoModelForCausalLM.from_pretrained(
"finetuned_myr1",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True
)
global TEXT_PIPELINE
TEXT_PIPELINE = pipeline(
"text-generation",
model=finetuned_model,
tokenizer=tokenizer
)
return "Finetuning complete. Model reloaded for inference!"
def ensure_pipeline():
"""
If TEXT_PIPELINE is None (e.g., we didn't finetune yet),
let's just load the *original* model from wuhp/myr1
so that 'predict' can still run.
"""
global TEXT_PIPELINE
if TEXT_PIPELINE is None:
# Load the original model for inference
TEXT_PIPELINE = pipeline(
"text-generation",
model="wuhp/myr1/myr1", # subfolder syntax
trust_remote_code=True
)
return TEXT_PIPELINE
@spaces.GPU(duration=120) # up to 2 minutes to generate text
def predict(prompt, min_new_tokens=260, max_new_tokens=2600):
"""
Generate text from the (possibly finetuned) model.
We default max_new_tokens to 2,600, but allow up to 5,000 in the UI slider.
We'll also ensure a minimum of 260 tokens.
"""
pipe = ensure_pipeline() # load model if not already
# Use pipeline generate params.
# The pipeline will handle do_sample by default.
# We set a large max_new_tokens, but be careful about timeouts.
outputs = pipe(
prompt,
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
temperature=0.7,
top_p=0.9
)
return outputs[0]["generated_text"]
#############################################################
# Build a Gradio UI
#############################################################
with gr.Blocks() as demo:
gr.Markdown("## ZeroGPU Finetuning & Long-Text Generation Demo")
finetune_btn = gr.Button("Finetune on a small WikiText-2 subset (5 min limit)")
finetune_status = gr.Textbox(label="Status")
# When user clicks, we run 'finetune_small_subset'
finetune_btn.click(fn=finetune_small_subset, outputs=finetune_status)
gr.Markdown(
"Once finetuning completes, or if you skip it, you can still do inference "
"with either the new or original model."
)
prompt_in = gr.Textbox(label="Prompt", lines=3)
min_tok_slider = gr.Slider(
minimum=260, maximum=5000, value=260, step=10,
label="Minimum New Tokens"
)
max_tok_slider = gr.Slider(
minimum=260, maximum=5000, value=2600, step=50,
label="Maximum New Tokens"
)
gen_btn = gr.Button("Generate")
output_box = gr.Textbox(label="Generated Text", lines=12)
gen_btn.click(
fn=predict,
inputs=[prompt_in, min_tok_slider, max_tok_slider],
outputs=output_box
)
demo.launch()
|