File size: 9,691 Bytes
5755412
 
4cf237b
13b1681
 
f82c314
 
 
 
 
 
 
13b1681
4fa9540
f82c314
eccd8f6
13b1681
1ce8e5a
13b1681
4e66e3d
13b1681
4e66e3d
1ce8e5a
b5aeb95
 
b446d41
b5aeb95
 
 
f82c314
b26485f
13b1681
 
b5aeb95
13b1681
 
b26485f
4cf237b
b5aeb95
4fa9540
 
 
 
 
b5aeb95
4fa9540
 
 
 
b5aeb95
f82c314
 
13b1681
 
 
b5aeb95
13b1681
1ce8e5a
13b1681
 
b26485f
13b1681
b26485f
 
 
 
13b1681
b26485f
 
 
13b1681
 
5755412
 
eccd8f6
b5aeb95
13b1681
eccd8f6
 
f82c314
b5aeb95
13b1681
 
1ce8e5a
13b1681
 
 
 
 
1ce8e5a
13b1681
 
 
 
 
4e66e3d
4fa9540
b5aeb95
 
4fa9540
 
 
 
 
 
4e66e3d
4fa9540
f82c314
 
4e66e3d
f82c314
13b1681
f82c314
 
4e66e3d
f82c314
 
13b1681
b5aeb95
f82c314
b5aeb95
f82c314
 
13b1681
f82c314
13b1681
f82c314
 
4cf237b
f82c314
 
13b1681
f82c314
 
1ce8e5a
13b1681
f82c314
 
1ce8e5a
13b1681
 
 
 
 
f82c314
 
 
13b1681
 
1ce8e5a
 
 
 
13b1681
f82c314
13b1681
 
b5aeb95
 
eccd8f6
b26485f
 
13b1681
 
b26485f
f82c314
 
13b1681
 
 
 
 
f82c314
13b1681
 
 
4cf237b
 
13b1681
 
 
 
4cf237b
13b1681
f82c314
b446d41
b5aeb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b1681
4e66e3d
b26485f
b5aeb95
b26485f
4e66e3d
 
f82c314
4e66e3d
 
f82c314
 
4e66e3d
f82c314
4e66e3d
eccd8f6
d93eea9
b5aeb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b446d41
b5aeb95
 
b26485f
b5aeb95
4e66e3d
 
f82c314
b5aeb95
4e66e3d
 
4cf237b
 
4fa9540
 
f82c314
b5aeb95
 
f82c314
 
 
4e66e3d
f82c314
 
eccd8f6
b5aeb95
 
 
 
 
 
 
 
 
 
 
 
5755412
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import gradio as gr
import spaces
import torch

from datasets import load_dataset
from transformers import (
    AutoConfig,
    AutoTokenizer,
    AutoModelForCausalLM,
    DataCollatorForLanguageModeling,
    Trainer,
    TrainingArguments,
    pipeline,
    BitsAndBytesConfig,
)

# PEFT (LoRA / QLoRA)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel

##############################################################################
# ZeroGPU + QLoRA Example
##############################################################################

TEXT_PIPELINE = None        # Pipeline for wuhp/myr1 (fine-tuned or base)
COMPARISON_PIPELINE = None  # Pipeline for the DeepSeek model

NUM_EXAMPLES = 50  # We'll train on 50 rows for demonstration

@spaces.GPU(duration=300)  # up to 5 min
def finetune_small_subset():
    """
    1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style),
    2) Adds LoRA adapters (trainable),
    3) Trains on a small subset of the Magpie dataset,
    4) Saves LoRA adapter to 'finetuned_myr1',
    5) Reloads LoRA adapters for inference in a pipeline.
    """

    # --- 1) Load a small subset of the Magpie dataset ---
    ds = load_dataset(
        "Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B", 
        split="train"
    )

    # For demonstration, pick a single conversation_id
    unique_ids = list(set(ds["conversation_id"]))
    single_id = unique_ids[0]
    ds = ds.filter(lambda x: x["conversation_id"] == single_id)

    # Then select only NUM_EXAMPLES from that subset
    ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))

    # --- 2) Setup 4-bit quantization with BitsAndBytes ---
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,  # or torch.float16
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )

    config = AutoConfig.from_pretrained(
        "wuhp/myr1", 
        subfolder="myr1",
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        "wuhp/myr1", 
        subfolder="myr1",
        trust_remote_code=True
    )

    base_model = AutoModelForCausalLM.from_pretrained(
        "wuhp/myr1",
        subfolder="myr1",
        config=config,
        quantization_config=bnb_config,  # <--- QLoRA 4-bit
        device_map="auto",
        trust_remote_code=True
    )

    # Prepare the model for k-bit training
    base_model = prepare_model_for_kbit_training(base_model)

    # --- 3) Create LoRA config & wrap the base model in LoRA ---
    lora_config = LoraConfig(
        r=16,
        lora_alpha=32,
        lora_dropout=0.05,
        bias="none",
        target_modules=["q_proj", "v_proj"],
        task_type=TaskType.CAUSAL_LM,
    )
    lora_model = get_peft_model(base_model, lora_config)

    # --- 4) Tokenize dataset ---
    def tokenize_fn(ex):
        """
        Combine instruction + response into a single text.
        You can adjust this to include more fields or different formatting.
        """
        text = (
            f"Instruction: {ex['instruction']}\n\n"
            f"Response: {ex['response']}"
        )
        return tokenizer(text, truncation=True, max_length=512)

    ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names)
    ds.set_format("torch")

    collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

    # Training args
    training_args = TrainingArguments(
        output_dir="finetuned_myr1",
        num_train_epochs=1,
        per_device_train_batch_size=1,
        gradient_accumulation_steps=2,
        logging_steps=5,
        save_steps=999999,   # effectively don't save mid-epoch
        save_total_limit=1,
        fp16=False,          # rely on bfloat16 from quantization
    )

    # Trainer
    trainer = Trainer(
        model=lora_model,
        args=training_args,
        train_dataset=ds,
        data_collator=collator,
    )

    # --- 5) Train ---
    trainer.train()

    # --- 6) Save LoRA adapter + tokenizer ---
    trainer.model.save_pretrained("finetuned_myr1")
    tokenizer.save_pretrained("finetuned_myr1")

    # --- 7) Reload the base model + LoRA adapter for inference
    base_model_2 = AutoModelForCausalLM.from_pretrained(
        "wuhp/myr1",
        subfolder="myr1",
        config=config,
        quantization_config=bnb_config,
        device_map="auto",
        trust_remote_code=True
    )
    base_model_2 = prepare_model_for_kbit_training(base_model_2)

    lora_model_2 = PeftModel.from_pretrained(
        base_model_2,
        "finetuned_myr1",
    )

    global TEXT_PIPELINE
    TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)

    return "Finetuning complete. Model loaded for inference."


def ensure_pipeline():
    """
    If we haven't finetuned yet (TEXT_PIPELINE is None),
    load the base model in 4-bit with NO LoRA.
    """
    global TEXT_PIPELINE
    if TEXT_PIPELINE is None:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
        config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
        base_model = AutoModelForCausalLM.from_pretrained(
            "wuhp/myr1",
            subfolder="myr1",
            config=config,
            quantization_config=bnb_config,
            device_map="auto",
            trust_remote_code=True
        )
        TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
    return TEXT_PIPELINE


def ensure_comparison_pipeline():
    """
    Load the DeepSeek model pipeline if not already loaded.
    """
    global COMPARISON_PIPELINE
    if COMPARISON_PIPELINE is None:
        # If you prefer 4-bit, you can define BitsAndBytesConfig here, 
        # but let's keep it simpler for demonstration (fp16 or bf16).
        config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
        tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
        model = AutoModelForCausalLM.from_pretrained(
            "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
            config=config,
            device_map="auto"
        )
        COMPARISON_PIPELINE = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer
        )
    return COMPARISON_PIPELINE


@spaces.GPU(duration=120)  # up to 2 min for text generation
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
    """
    Generates text from the fine-tuned (LoRA) model if present, else the base model.
    """
    pipe = ensure_pipeline()
    out = pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )
    return out[0]["generated_text"]


@spaces.GPU(duration=120)  # up to 2 min for text generation
def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
    """
    Generates text side-by-side from the local myr1 pipeline (fine-tuned or base)
    AND from the DeepSeek model. Returns two strings.
    """
    local_pipe = ensure_pipeline()
    comp_pipe = ensure_comparison_pipeline()

    local_out = local_pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )
    local_text = local_out[0]["generated_text"]

    comp_out = comp_pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )
    comp_text = comp_out[0]["generated_text"]

    return local_text, comp_text


# Build Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# QLoRA Fine-tuning & Comparison Demo")
    gr.Markdown("**Fine-tune wuhp/myr1** on a small subset of the Magpie dataset, then generate or compare output with the DeepSeek model.")

    finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on Magpie subset (up to 5 min)")
    status_box = gr.Textbox(label="Finetune Status")
    finetune_btn.click(fn=finetune_small_subset, outputs=status_box)

    gr.Markdown("### Generate with myr1 (fine-tuned if done, else base)")

    prompt_in = gr.Textbox(lines=3, label="Prompt")
    temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
    top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
    min_tokens = gr.Slider(50, 1024, value=50, step=10, label="Min New Tokens")
    max_tokens = gr.Slider(50, 1024, value=200, step=50, label="Max New Tokens")

    output_box = gr.Textbox(label="myr1 Output", lines=8)
    gen_btn = gr.Button("Generate with myr1")

    gen_btn.click(
        fn=predict,
        inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
        outputs=output_box
    )

    gr.Markdown("### Compare myr1 vs DeepSeek side-by-side")

    compare_btn = gr.Button("Compare")
    out_local = gr.Textbox(label="myr1 Output", lines=8)
    out_deepseek = gr.Textbox(label="DeepSeek Output", lines=8)

    compare_btn.click(
        fn=compare_models,
        inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
        outputs=[out_local, out_deepseek]
    )

demo.launch()