File size: 14,605 Bytes
5755412
 
4cf237b
2f957f0
 
13b1681
 
f82c314
 
 
 
 
 
 
13b1681
4fa9540
f82c314
eccd8f6
13b1681
1ce8e5a
13b1681
2f957f0
 
 
4e66e3d
2f957f0
4e66e3d
1ce8e5a
2f957f0
 
b5aeb95
 
2f957f0
f82c314
b26485f
13b1681
 
b5aeb95
13b1681
 
b26485f
4cf237b
b5aeb95
4fa9540
 
 
 
 
 
 
 
 
f82c314
 
2f957f0
13b1681
 
b5aeb95
13b1681
1ce8e5a
13b1681
 
b26485f
13b1681
b26485f
 
 
 
13b1681
b26485f
 
 
13b1681
 
5755412
 
eccd8f6
b5aeb95
13b1681
eccd8f6
 
f82c314
13b1681
 
1ce8e5a
13b1681
 
 
 
 
1ce8e5a
13b1681
 
 
 
 
4e66e3d
4fa9540
 
 
 
 
4e66e3d
4fa9540
f82c314
 
4e66e3d
f82c314
13b1681
f82c314
 
4e66e3d
f82c314
 
13b1681
2f957f0
f82c314
2f957f0
f82c314
 
 
13b1681
f82c314
 
4cf237b
f82c314
 
 
2f957f0
13b1681
f82c314
 
2f957f0
13b1681
 
 
 
 
f82c314
 
 
13b1681
 
1ce8e5a
 
 
 
13b1681
f82c314
13b1681
 
b5aeb95
 
eccd8f6
b26485f
 
13b1681
 
b26485f
f82c314
 
13b1681
 
 
 
 
f82c314
13b1681
 
 
4cf237b
 
13b1681
 
 
 
4cf237b
13b1681
f82c314
b446d41
b5aeb95
 
 
 
 
 
 
 
 
 
 
 
 
 
2f957f0
b5aeb95
 
 
2f957f0
4e66e3d
b26485f
2f957f0
b26485f
4e66e3d
 
f82c314
4e66e3d
 
f82c314
 
4e66e3d
f82c314
4e66e3d
eccd8f6
d93eea9
2f957f0
b5aeb95
 
2f957f0
b5aeb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f957f0
b5aeb95
 
2f957f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5aeb95
2f957f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b446d41
2f957f0
b26485f
b5aeb95
4e66e3d
f82c314
2f957f0
4e66e3d
2f957f0
 
4e66e3d
4cf237b
 
2f957f0
 
f82c314
b5aeb95
 
f82c314
 
4e66e3d
f82c314
 
eccd8f6
2f957f0
 
b5aeb95
2f957f0
 
b5aeb95
 
 
 
 
 
2f957f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5755412
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import gradio as gr
import spaces
import torch
import faiss
import numpy as np

from datasets import load_dataset
from transformers import (
    AutoConfig,
    AutoTokenizer,
    AutoModelForCausalLM,
    DataCollatorForLanguageModeling,
    Trainer,
    TrainingArguments,
    pipeline,
    BitsAndBytesConfig,
)

# PEFT (LoRA / QLoRA)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel

# For embeddings
from sentence_transformers import SentenceTransformer

##############################################################################
# QLoRA Demo Setup
##############################################################################

TEXT_PIPELINE = None
COMPARISON_PIPELINE = None
NUM_EXAMPLES = 50  # We'll train on 50 rows for demonstration

@spaces.GPU(duration=300)
def finetune_small_subset():
    """
    1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style),
    2) Adds LoRA adapters (trainable),
    3) Trains on a small subset of the Magpie dataset,
    4) Saves LoRA adapter to 'finetuned_myr1',
    5) Reloads LoRA adapters for inference in a pipeline.
    """

    # --- 1) Load a small subset of the Magpie dataset ---
    ds = load_dataset(
        "Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B", 
        split="train"
    )

    unique_ids = list(set(ds["conversation_id"]))
    single_id = unique_ids[0]
    ds = ds.filter(lambda x: x["conversation_id"] == single_id)

    ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))

    # --- 2) Setup 4-bit quantization ---
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,  # or torch.float16
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )

    config = AutoConfig.from_pretrained(
        "wuhp/myr1", 
        subfolder="myr1",
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        "wuhp/myr1", 
        subfolder="myr1",
        trust_remote_code=True
    )

    base_model = AutoModelForCausalLM.from_pretrained(
        "wuhp/myr1",
        subfolder="myr1",
        config=config,
        quantization_config=bnb_config,  # <--- QLoRA 4-bit
        device_map="auto",
        trust_remote_code=True
    )

    base_model = prepare_model_for_kbit_training(base_model)

    # --- 3) Create LoRA config & wrap the base model in LoRA ---
    lora_config = LoraConfig(
        r=16,
        lora_alpha=32,
        lora_dropout=0.05,
        bias="none",
        target_modules=["q_proj", "v_proj"],
        task_type=TaskType.CAUSAL_LM,
    )
    lora_model = get_peft_model(base_model, lora_config)

    # --- 4) Tokenize dataset ---
    def tokenize_fn(ex):
        text = (
            f"Instruction: {ex['instruction']}\n\n"
            f"Response: {ex['response']}"
        )
        return tokenizer(text, truncation=True, max_length=512)

    ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names)
    ds.set_format("torch")

    collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

    # Training args
    training_args = TrainingArguments(
        output_dir="finetuned_myr1",
        num_train_epochs=1,
        per_device_train_batch_size=1,
        gradient_accumulation_steps=2,
        logging_steps=5,
        save_steps=999999,   
        save_total_limit=1,
        fp16=False,          
    )

    trainer = Trainer(
        model=lora_model,
        args=training_args,
        train_dataset=ds,
        data_collator=collator,
    )
    trainer.train()

    # --- 5) Save LoRA adapter + tokenizer ---
    trainer.model.save_pretrained("finetuned_myr1")
    tokenizer.save_pretrained("finetuned_myr1")

    # --- 6) Reload for inference
    base_model_2 = AutoModelForCausalLM.from_pretrained(
        "wuhp/myr1",
        subfolder="myr1",
        config=config,
        quantization_config=bnb_config,
        device_map="auto",
        trust_remote_code=True
    )
    base_model_2 = prepare_model_for_kbit_training(base_model_2)

    lora_model_2 = PeftModel.from_pretrained(
        base_model_2,
        "finetuned_myr1",
    )

    global TEXT_PIPELINE
    TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)

    return "Finetuning complete. Model loaded for inference."


def ensure_pipeline():
    """
    If we haven't finetuned yet (TEXT_PIPELINE is None),
    load the base model in 4-bit with NO LoRA.
    """
    global TEXT_PIPELINE
    if TEXT_PIPELINE is None:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
        config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
        base_model = AutoModelForCausalLM.from_pretrained(
            "wuhp/myr1",
            subfolder="myr1",
            config=config,
            quantization_config=bnb_config,
            device_map="auto",
            trust_remote_code=True
        )
        TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
    return TEXT_PIPELINE


def ensure_comparison_pipeline():
    """
    Load the DeepSeek model pipeline if not already loaded.
    """
    global COMPARISON_PIPELINE
    if COMPARISON_PIPELINE is None:
        config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
        tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
        model = AutoModelForCausalLM.from_pretrained(
            "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
            config=config,
            device_map="auto"
        )
        COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
    return COMPARISON_PIPELINE


@spaces.GPU(duration=120)
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
    """
    Simple single-prompt generation (no retrieval).
    """
    pipe = ensure_pipeline()
    out = pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )
    return out[0]["generated_text"]


@spaces.GPU(duration=120)
def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
    """
    Compare local pipeline vs. DeepSeek side-by-side.
    """
    local_pipe = ensure_pipeline()
    comp_pipe = ensure_comparison_pipeline()

    local_out = local_pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )
    comp_out = comp_pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )
    return local_out[0]["generated_text"], comp_out[0]["generated_text"]


###############################################################################
# Retrieval-Augmented Memory with FAISS
###############################################################################
class ConversationRetriever:
    """
    A simple in-memory store + FAISS for retrieval of conversation chunks.
    Each chunk is embedded via SentenceTransformer. On a new user query,
    we embed the query, do similarity search, and retrieve top-k relevant chunks.
    """

    def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2", embed_dim=384):
        """
        model_name: embedding model for messages
        embed_dim: dimension of the embeddings from that model
        """
        self.embed_model = SentenceTransformer(model_name)
        self.embed_dim = embed_dim

        # We'll store (text, vector) in FAISS.  For metadata, store in python list/dict.
        # For a real app, you'd probably want a more robust store.
        self.index = faiss.IndexFlatL2(embed_dim)
        self.texts = []  # store the raw text chunks
        self.vectors = []  # store vectors (redundant but simpler to show)
        self.ids = []  # store an integer ID or similar

        self.id_counter = 0

    def add_text(self, text):
        """
        Add a new text chunk to the vector store.
        Could chunk it up if desired, but here we treat the entire text as one chunk.
        """
        if not text.strip():
            return

        emb = self.embed_model.encode([text], convert_to_numpy=True)
        vec = emb[0].astype(np.float32)  # shape [embed_dim]
        self.index.add(vec.reshape(1, -1))

        self.texts.append(text)
        self.vectors.append(vec)
        self.ids.append(self.id_counter)

        self.id_counter += 1

    def search(self, query, top_k=3):
        """
        Given a query, embed it, do similarity search in FAISS, return top-k texts.
        """
        q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32)
        q_vec = q_emb[0].reshape(1, -1)
        distances, indices = self.index.search(q_vec, top_k)

        # indices is shape [1, top_k], distances is shape [1, top_k]
        results = []
        for dist, idx in zip(distances[0], indices[0]):
            if idx < len(self.texts):  # safety check
                results.append((self.texts[idx], dist))
        return results


###############################################################################
# Build a Chat that uses RAG
###############################################################################
retriever = ConversationRetriever()  # global retriever instance

def build_rag_prompt(user_query, retrieved_chunks):
    """
    Construct a prompt that includes:
      - The user's new query
      - A "Relevant Context" section from retrieved chunks
      - "Assistant:" to let the model continue
    Feel free to customize the formatting as you like.
    """
    context_str = ""
    for i, (chunk, dist) in enumerate(retrieved_chunks):
        context_str += f"Chunk #{i+1} (similarity score ~ {dist:.2f}):\n{chunk}\n\n"

    prompt = (
        f"User's Query:\n{user_query}\n\n"
        f"Relevant Context from Conversation:\n{context_str}"
        "Assistant:"
    )
    return prompt


@spaces.GPU(duration=120)
def chat_rag(user_input, history, temperature, top_p, min_new_tokens, max_new_tokens):
    """
    Our RAG-based chat function. We'll:
      1) Add user input to FAISS
      2) Retrieve top-k relevant older messages from FAISS
      3) Build a prompt that includes the relevant chunks + user query
      4) Generate a response from the pipeline
      5) Add the assistant's response to FAISS as well
    """
    pipe = ensure_pipeline()

    # 1) Add the user input as a chunk to the retriever DB.
    retriever.add_text(f"User: {user_input}")

    # 2) Retrieve top-3 older chunks. We can skip the chunk we just added if we want to
    # (since it's the same text), but for simplicity let's just do a search for user_input.
    top_k = 3
    results = retriever.search(user_input, top_k=top_k)

    # 3) Build final prompt
    prompt = build_rag_prompt(user_input, results)

    # 4) Generate
    output = pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )[0]["generated_text"]

    # We only want the new part after "Assistant:"
    # Because the pipeline output includes the entire prompt + new text.
    if output.startswith(prompt):
        assistant_reply = output[len(prompt):].strip()
    else:
        assistant_reply = output.strip()

    # 5) Add the assistant's response to the DB as well
    retriever.add_text(f"Assistant: {assistant_reply}")

    # 6) Update the chat history for display in the Gradio Chatbot
    history.append([user_input, assistant_reply])
    return history, history


###############################################################################
# Gradio UI
###############################################################################
with gr.Blocks() as demo:
    gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo")

    finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on Magpie subset (up to 5 min)")
    status_box = gr.Textbox(label="Finetune Status")

    finetune_btn.click(fn=finetune_small_subset, outputs=status_box)

    # Simple generation UI (no retrieval):
    gr.Markdown("## Direct Generation (No Retrieval)")
    prompt_in = gr.Textbox(lines=3, label="Prompt")
    temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
    top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
    min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens")
    max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")

    output_box = gr.Textbox(label="myr1 Output", lines=8)
    gen_btn = gr.Button("Generate with myr1")
    gen_btn.click(
        fn=predict,
        inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
        outputs=output_box
    )

    # Comparison UI:
    gr.Markdown("## Compare myr1 vs DeepSeek")
    compare_btn = gr.Button("Compare")
    out_local = gr.Textbox(label="myr1 Output", lines=6)
    out_deepseek = gr.Textbox(label="DeepSeek Output", lines=6)
    compare_btn.click(
        fn=compare_models,
        inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
        outputs=[out_local, out_deepseek]
    )

    # RAG-based Chat
    gr.Markdown("## Chat with Retrieval-Augmented Memory")
    with gr.Row():
        with gr.Column():
            chatbot = gr.Chatbot(label="RAG Chat")
            chat_state = gr.State([])  # just for display

            user_input = gr.Textbox(
                show_label=False,
                placeholder="Ask a question...",
                lines=2
            )
            send_btn = gr.Button("Send")

    # On user submit, call chat_rag
    user_input.submit(
        fn=chat_rag,
        inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
        outputs=[chat_state, chatbot]
    )
    send_btn.click(
        fn=chat_rag,
        inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
        outputs=[chat_state, chatbot]
    )

demo.launch()