Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
-
# --------------------------------------------------------------------
|
3 |
-
# A Gradio-based face recognition system that mimics most features of
|
4 |
-
# your Streamlit app: real-time webcam, image tests, configuration,
|
5 |
-
# database enrollment, searching, user removal, etc.
|
6 |
-
# --------------------------------------------------------------------
|
7 |
-
|
8 |
import os
|
9 |
import sys
|
10 |
import math
|
@@ -19,7 +12,7 @@ from typing import Optional, Dict, List, Tuple
|
|
19 |
from dataclasses import dataclass, field
|
20 |
from collections import Counter
|
21 |
|
22 |
-
# 3rd-party
|
23 |
import gradio as gr
|
24 |
from ultralytics import YOLO
|
25 |
from facenet_pytorch import InceptionResnetV1
|
@@ -27,7 +20,7 @@ from torchvision import transforms
|
|
27 |
from deep_sort_realtime.deepsort_tracker import DeepSort
|
28 |
|
29 |
# --------------------------------------------------------------------
|
30 |
-
#
|
31 |
# --------------------------------------------------------------------
|
32 |
logging.basicConfig(
|
33 |
level=logging.INFO,
|
@@ -36,20 +29,24 @@ logging.basicConfig(
|
|
36 |
)
|
37 |
logger = logging.getLogger(__name__)
|
38 |
|
|
|
39 |
logging.getLogger('torch').setLevel(logging.ERROR)
|
40 |
logging.getLogger('deep_sort_realtime').setLevel(logging.ERROR)
|
41 |
|
|
|
|
|
|
|
42 |
DEFAULT_MODEL_URL = "https://github.com/wuhplaptop/face-11-n/blob/main/face2.pt?raw=true"
|
43 |
DEFAULT_DB_PATH = os.path.expanduser("~/.face_pipeline/known_faces.pkl")
|
44 |
MODEL_DIR = os.path.expanduser("~/.face_pipeline/models")
|
45 |
CONFIG_PATH = os.path.expanduser("~/.face_pipeline/config.pkl")
|
46 |
|
47 |
-
#
|
48 |
LEFT_EYE_IDX = [33, 160, 158, 133, 153, 144]
|
49 |
RIGHT_EYE_IDX = [263, 387, 385, 362, 380, 373]
|
50 |
|
51 |
# --------------------------------------------------------------------
|
52 |
-
# PIPELINE CONFIG
|
53 |
# --------------------------------------------------------------------
|
54 |
@dataclass
|
55 |
class PipelineConfig:
|
@@ -191,11 +188,11 @@ class FaceDatabase:
|
|
191 |
|
192 |
def search_by_image(self, query_embedding: np.ndarray, threshold: float = 0.7) -> List[Tuple[str, float]]:
|
193 |
results = []
|
194 |
-
for
|
195 |
-
for db_emb in
|
196 |
similarity = FacePipeline.cosine_similarity(query_embedding, db_emb)
|
197 |
if similarity >= threshold:
|
198 |
-
results.append((
|
199 |
return sorted(results, key=lambda x: x[1], reverse=True)
|
200 |
|
201 |
# --------------------------------------------------------------------
|
@@ -241,7 +238,7 @@ class YOLOFaceDetector:
|
|
241 |
return []
|
242 |
|
243 |
# --------------------------------------------------------------------
|
244 |
-
# FACE TRACKER
|
245 |
# --------------------------------------------------------------------
|
246 |
class FaceTracker:
|
247 |
def __init__(self, max_age: int = 30):
|
@@ -287,7 +284,7 @@ class FaceNetEmbedder:
|
|
287 |
return None
|
288 |
|
289 |
# --------------------------------------------------------------------
|
290 |
-
#
|
291 |
# --------------------------------------------------------------------
|
292 |
class FacePipeline:
|
293 |
def __init__(self, config: PipelineConfig):
|
@@ -351,7 +348,6 @@ class FacePipeline:
|
|
351 |
name = "Spoofed"
|
352 |
similarity = 0.0
|
353 |
else:
|
354 |
-
# Face recognition
|
355 |
embedding = self.facenet.get_embedding(face_roi)
|
356 |
if embedding is not None and self.config.recognition['enable']:
|
357 |
name, similarity = self.recognize_face(
|
@@ -371,7 +367,7 @@ class FacePipeline:
|
|
371 |
label_text = f"{name}"
|
372 |
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color_bgr, 2)
|
373 |
cv2.putText(
|
374 |
-
annotated_frame, label_text, (x1, y1 - 10),
|
375 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color_bgr, 2
|
376 |
)
|
377 |
|
@@ -422,10 +418,9 @@ class FacePipeline:
|
|
422 |
return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6))
|
423 |
|
424 |
# --------------------------------------------------------------------
|
425 |
-
# GLOBAL
|
426 |
# --------------------------------------------------------------------
|
427 |
pipeline = None
|
428 |
-
|
429 |
def load_pipeline() -> FacePipeline:
|
430 |
global pipeline
|
431 |
if pipeline is None:
|
@@ -436,31 +431,25 @@ def load_pipeline() -> FacePipeline:
|
|
436 |
return pipeline
|
437 |
|
438 |
# --------------------------------------------------------------------
|
439 |
-
# GRADIO
|
440 |
# --------------------------------------------------------------------
|
441 |
def hex_to_bgr(hex_str: str) -> Tuple[int,int,int]:
|
442 |
-
"""
|
443 |
-
Convert a hex string (#RRGGBB) into a BGR tuple as used in OpenCV.
|
444 |
-
"""
|
445 |
if not hex_str.startswith('#'):
|
446 |
hex_str = f"#{hex_str}"
|
447 |
hex_str = hex_str.lstrip('#')
|
448 |
if len(hex_str) != 6:
|
449 |
-
return (255, 0, 0)
|
450 |
r = int(hex_str[0:2], 16)
|
451 |
g = int(hex_str[2:4], 16)
|
452 |
b = int(hex_str[4:6], 16)
|
453 |
return (b,g,r)
|
454 |
|
455 |
def bgr_to_hex(bgr: Tuple[int,int,int]) -> str:
|
456 |
-
"""
|
457 |
-
Convert a BGR tuple (as stored in pipeline config) to a #RRGGBB hex string.
|
458 |
-
"""
|
459 |
b,g,r = bgr
|
460 |
return f"#{r:02x}{g:02x}{b:02x}"
|
461 |
|
462 |
# --------------------------------------------------------------------
|
463 |
-
# TAB:
|
464 |
# --------------------------------------------------------------------
|
465 |
def update_config(
|
466 |
enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
|
@@ -473,11 +462,10 @@ def update_config(
|
|
473 |
mesh_hex, contour_hex, iris_hex,
|
474 |
eye_color_text_hex
|
475 |
):
|
476 |
-
# Load pipeline
|
477 |
pl = load_pipeline()
|
478 |
cfg = pl.config
|
479 |
|
480 |
-
#
|
481 |
cfg.recognition['enable'] = enable_recognition
|
482 |
cfg.anti_spoof['enable'] = enable_antispoof
|
483 |
cfg.blink['enable'] = enable_blink
|
@@ -489,7 +477,7 @@ def update_config(
|
|
489 |
cfg.face_mesh_options['contours'] = show_contours
|
490 |
cfg.face_mesh_options['irises'] = show_irises
|
491 |
|
492 |
-
#
|
493 |
cfg.detection_conf_thres = detection_conf
|
494 |
cfg.recognition_conf_thres = recognition_thresh
|
495 |
cfg.anti_spoof['lap_thresh'] = antispoof_thresh
|
@@ -497,8 +485,8 @@ def update_config(
|
|
497 |
cfg.hand['min_detection_confidence'] = hand_det_conf
|
498 |
cfg.hand['min_tracking_confidence'] = hand_track_conf
|
499 |
|
500 |
-
#
|
501 |
-
cfg.bbox_color = hex_to_bgr(bbox_hex)[::-1]
|
502 |
cfg.spoofed_bbox_color = hex_to_bgr(spoofed_hex)[::-1]
|
503 |
cfg.unknown_bbox_color = hex_to_bgr(unknown_hex)[::-1]
|
504 |
cfg.eye_outline_color = hex_to_bgr(eye_hex)[::-1]
|
@@ -511,19 +499,13 @@ def update_config(
|
|
511 |
cfg.iris_color = hex_to_bgr(iris_hex)[::-1]
|
512 |
cfg.eye_color_text_color = hex_to_bgr(eye_color_text_hex)[::-1]
|
513 |
|
514 |
-
# Save config
|
515 |
cfg.save(CONFIG_PATH)
|
516 |
-
|
517 |
return "Configuration saved successfully!"
|
518 |
|
519 |
# --------------------------------------------------------------------
|
520 |
-
# TAB:
|
521 |
# --------------------------------------------------------------------
|
522 |
def enroll_user(name: str, images: List[np.ndarray]) -> str:
|
523 |
-
"""
|
524 |
-
Enroll user by name using one or more images. images is a list of
|
525 |
-
NxMx3 numpy arrays in BGR or RGB depending on Gradio type.
|
526 |
-
"""
|
527 |
pl = load_pipeline()
|
528 |
if not name:
|
529 |
return "Please provide a user name."
|
@@ -535,13 +517,8 @@ def enroll_user(name: str, images: List[np.ndarray]) -> str:
|
|
535 |
for img in images:
|
536 |
if img is None:
|
537 |
continue
|
538 |
-
# Gradio
|
539 |
-
|
540 |
-
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
541 |
-
else:
|
542 |
-
img_bgr = img
|
543 |
-
|
544 |
-
# Run YOLO detection on each image
|
545 |
detections = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
546 |
for x1, y1, x2, y2, conf, cls in detections:
|
547 |
face_roi = img_bgr[y1:y2, x1:x2]
|
@@ -569,9 +546,6 @@ def search_by_name(name: str) -> str:
|
|
569 |
return f"No embeddings found for user '{name}'."
|
570 |
|
571 |
def search_by_image(image: np.ndarray) -> str:
|
572 |
-
"""
|
573 |
-
Search database by face in the uploaded image.
|
574 |
-
"""
|
575 |
pl = load_pipeline()
|
576 |
if image is None:
|
577 |
return "No image uploaded."
|
@@ -611,27 +585,11 @@ def list_users() -> str:
|
|
611 |
pl = load_pipeline()
|
612 |
labels = pl.db.list_labels()
|
613 |
if labels:
|
614 |
-
return
|
615 |
return "No users enrolled."
|
616 |
|
617 |
# --------------------------------------------------------------------
|
618 |
-
# TAB:
|
619 |
-
# --------------------------------------------------------------------
|
620 |
-
def process_webcam_frame(frame: np.ndarray) -> Tuple[np.ndarray, str]:
|
621 |
-
"""
|
622 |
-
Called for every incoming webcam frame. Return annotated frame + textual info.
|
623 |
-
Gradio delivers frames in RGB.
|
624 |
-
"""
|
625 |
-
if frame is None:
|
626 |
-
return None, "No frame."
|
627 |
-
pl = load_pipeline()
|
628 |
-
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
629 |
-
annotated_bgr, detections = pl.process_frame(frame_bgr)
|
630 |
-
annotated_rgb = cv2.cvtColor(annotated_bgr, cv2.COLOR_BGR2RGB)
|
631 |
-
return annotated_rgb, str(detections)
|
632 |
-
|
633 |
-
# --------------------------------------------------------------------
|
634 |
-
# TAB: Image Test
|
635 |
# --------------------------------------------------------------------
|
636 |
def process_test_image(img: np.ndarray) -> Tuple[np.ndarray, str]:
|
637 |
if img is None:
|
@@ -647,21 +605,10 @@ def process_test_image(img: np.ndarray) -> Tuple[np.ndarray, str]:
|
|
647 |
# --------------------------------------------------------------------
|
648 |
def build_app():
|
649 |
with gr.Blocks() as demo:
|
650 |
-
gr.Markdown("# Face Recognition System (
|
651 |
-
|
652 |
-
with gr.Tab("Real-Time Recognition"):
|
653 |
-
gr.Markdown("Live face recognition from your webcam (roughly 'real-time').")
|
654 |
-
webcam_input = gr.Video(source="webcam", mirror=True, streaming=True)
|
655 |
-
webcam_output = gr.Image()
|
656 |
-
webcam_info = gr.Textbox(label="Detections", interactive=False)
|
657 |
-
webcam_input.change(
|
658 |
-
fn=process_webcam_frame,
|
659 |
-
inputs=webcam_input,
|
660 |
-
outputs=[webcam_output, webcam_info],
|
661 |
-
)
|
662 |
|
663 |
with gr.Tab("Image Test"):
|
664 |
-
gr.Markdown("Upload a single image for face detection
|
665 |
image_input = gr.Image(type="numpy", label="Upload Image")
|
666 |
image_out = gr.Image()
|
667 |
image_info = gr.Textbox(label="Detections", interactive=False)
|
@@ -674,8 +621,8 @@ def build_app():
|
|
674 |
)
|
675 |
|
676 |
with gr.Tab("Configuration"):
|
677 |
-
gr.Markdown("Modify
|
678 |
-
|
679 |
with gr.Row():
|
680 |
enable_recognition = gr.Checkbox(label="Enable Face Recognition", value=True)
|
681 |
enable_antispoof = gr.Checkbox(label="Enable Anti-Spoof", value=True)
|
@@ -684,7 +631,7 @@ def build_app():
|
|
684 |
enable_eyecolor = gr.Checkbox(label="Enable Eye Color Detection", value=False)
|
685 |
enable_facemesh = gr.Checkbox(label="Enable Face Mesh", value=False)
|
686 |
|
687 |
-
gr.Markdown("**Face Mesh Options**
|
688 |
with gr.Row():
|
689 |
show_tesselation = gr.Checkbox(label="Show Tesselation", value=False)
|
690 |
show_contours = gr.Checkbox(label="Show Contours", value=False)
|
@@ -713,7 +660,6 @@ def build_app():
|
|
713 |
mesh_hex = gr.Textbox(label="Mesh Color", value="#64ff64")
|
714 |
contour_hex = gr.Textbox(label="Contour Color", value="#c8c800")
|
715 |
iris_hex = gr.Textbox(label="Iris Color", value="#ff00ff")
|
716 |
-
|
717 |
eye_color_text_hex = gr.Textbox(label="Eye Color Text Color", value="#ffffff")
|
718 |
|
719 |
save_btn = gr.Button("Save Configuration")
|
@@ -722,8 +668,8 @@ def build_app():
|
|
722 |
save_btn.click(
|
723 |
fn=update_config,
|
724 |
inputs=[
|
725 |
-
enable_recognition, enable_antispoof, enable_blink,
|
726 |
-
|
727 |
show_tesselation, show_contours, show_irises,
|
728 |
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh,
|
729 |
hand_det_conf, hand_track_conf,
|
@@ -753,14 +699,17 @@ def build_app():
|
|
753 |
search_result = gr.Textbox(label="", interactive=False)
|
754 |
|
755 |
def update_search_visibility(mode):
|
|
|
756 |
if mode == "Name":
|
757 |
return gr.update(visible=True), gr.update(visible=False)
|
758 |
else:
|
759 |
return gr.update(visible=False), gr.update(visible=True)
|
760 |
|
761 |
-
search_mode.change(
|
762 |
-
|
763 |
-
|
|
|
|
|
764 |
|
765 |
def search_user(mode, name, img):
|
766 |
if mode == "Name":
|
@@ -768,21 +717,21 @@ def build_app():
|
|
768 |
else:
|
769 |
return search_by_image(img)
|
770 |
|
771 |
-
search_btn.click(
|
772 |
-
|
773 |
-
|
|
|
|
|
774 |
|
775 |
with gr.Accordion("User Management Tools", open=False):
|
776 |
list_btn = gr.Button("List Enrolled Users")
|
777 |
list_output = gr.Textbox(label="", interactive=False)
|
778 |
list_btn.click(fn=lambda: list_users(), inputs=[], outputs=[list_output])
|
779 |
|
780 |
-
# Reload user list dropdown
|
781 |
def get_user_list():
|
782 |
pl = load_pipeline()
|
783 |
return gr.update(choices=pl.db.list_labels())
|
784 |
|
785 |
-
# A dedicated button to refresh the dropdown
|
786 |
refresh_users_btn = gr.Button("Refresh User List")
|
787 |
refresh_users_btn.click(fn=get_user_list, inputs=[], outputs=[search_name_input])
|
788 |
|
@@ -800,4 +749,5 @@ def build_app():
|
|
800 |
# --------------------------------------------------------------------
|
801 |
if __name__ == "__main__":
|
802 |
app = build_app()
|
|
|
803 |
app.queue().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
import math
|
|
|
12 |
from dataclasses import dataclass, field
|
13 |
from collections import Counter
|
14 |
|
15 |
+
# 3rd-party
|
16 |
import gradio as gr
|
17 |
from ultralytics import YOLO
|
18 |
from facenet_pytorch import InceptionResnetV1
|
|
|
20 |
from deep_sort_realtime.deepsort_tracker import DeepSort
|
21 |
|
22 |
# --------------------------------------------------------------------
|
23 |
+
# LOGGING
|
24 |
# --------------------------------------------------------------------
|
25 |
logging.basicConfig(
|
26 |
level=logging.INFO,
|
|
|
29 |
)
|
30 |
logger = logging.getLogger(__name__)
|
31 |
|
32 |
+
# Mute some debug logs from third-party libraries
|
33 |
logging.getLogger('torch').setLevel(logging.ERROR)
|
34 |
logging.getLogger('deep_sort_realtime').setLevel(logging.ERROR)
|
35 |
|
36 |
+
# --------------------------------------------------------------------
|
37 |
+
# CONSTANTS
|
38 |
+
# --------------------------------------------------------------------
|
39 |
DEFAULT_MODEL_URL = "https://github.com/wuhplaptop/face-11-n/blob/main/face2.pt?raw=true"
|
40 |
DEFAULT_DB_PATH = os.path.expanduser("~/.face_pipeline/known_faces.pkl")
|
41 |
MODEL_DIR = os.path.expanduser("~/.face_pipeline/models")
|
42 |
CONFIG_PATH = os.path.expanduser("~/.face_pipeline/config.pkl")
|
43 |
|
44 |
+
# Example eye indices if you still want blink detection somewhere
|
45 |
LEFT_EYE_IDX = [33, 160, 158, 133, 153, 144]
|
46 |
RIGHT_EYE_IDX = [263, 387, 385, 362, 380, 373]
|
47 |
|
48 |
# --------------------------------------------------------------------
|
49 |
+
# PIPELINE CONFIG
|
50 |
# --------------------------------------------------------------------
|
51 |
@dataclass
|
52 |
class PipelineConfig:
|
|
|
188 |
|
189 |
def search_by_image(self, query_embedding: np.ndarray, threshold: float = 0.7) -> List[Tuple[str, float]]:
|
190 |
results = []
|
191 |
+
for lbl, embs in self.embeddings.items():
|
192 |
+
for db_emb in embs:
|
193 |
similarity = FacePipeline.cosine_similarity(query_embedding, db_emb)
|
194 |
if similarity >= threshold:
|
195 |
+
results.append((lbl, similarity))
|
196 |
return sorted(results, key=lambda x: x[1], reverse=True)
|
197 |
|
198 |
# --------------------------------------------------------------------
|
|
|
238 |
return []
|
239 |
|
240 |
# --------------------------------------------------------------------
|
241 |
+
# FACE TRACKER (Used if you want tracking across frames - optional)
|
242 |
# --------------------------------------------------------------------
|
243 |
class FaceTracker:
|
244 |
def __init__(self, max_age: int = 30):
|
|
|
284 |
return None
|
285 |
|
286 |
# --------------------------------------------------------------------
|
287 |
+
# FACE PIPELINE
|
288 |
# --------------------------------------------------------------------
|
289 |
class FacePipeline:
|
290 |
def __init__(self, config: PipelineConfig):
|
|
|
348 |
name = "Spoofed"
|
349 |
similarity = 0.0
|
350 |
else:
|
|
|
351 |
embedding = self.facenet.get_embedding(face_roi)
|
352 |
if embedding is not None and self.config.recognition['enable']:
|
353 |
name, similarity = self.recognize_face(
|
|
|
367 |
label_text = f"{name}"
|
368 |
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color_bgr, 2)
|
369 |
cv2.putText(
|
370 |
+
annotated_frame, label_text, (x1, y1 - 10),
|
371 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color_bgr, 2
|
372 |
)
|
373 |
|
|
|
418 |
return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6))
|
419 |
|
420 |
# --------------------------------------------------------------------
|
421 |
+
# GLOBAL LOAD PIPELINE
|
422 |
# --------------------------------------------------------------------
|
423 |
pipeline = None
|
|
|
424 |
def load_pipeline() -> FacePipeline:
|
425 |
global pipeline
|
426 |
if pipeline is None:
|
|
|
431 |
return pipeline
|
432 |
|
433 |
# --------------------------------------------------------------------
|
434 |
+
# GRADIO UTILS
|
435 |
# --------------------------------------------------------------------
|
436 |
def hex_to_bgr(hex_str: str) -> Tuple[int,int,int]:
|
|
|
|
|
|
|
437 |
if not hex_str.startswith('#'):
|
438 |
hex_str = f"#{hex_str}"
|
439 |
hex_str = hex_str.lstrip('#')
|
440 |
if len(hex_str) != 6:
|
441 |
+
return (255, 0, 0)
|
442 |
r = int(hex_str[0:2], 16)
|
443 |
g = int(hex_str[2:4], 16)
|
444 |
b = int(hex_str[4:6], 16)
|
445 |
return (b,g,r)
|
446 |
|
447 |
def bgr_to_hex(bgr: Tuple[int,int,int]) -> str:
|
|
|
|
|
|
|
448 |
b,g,r = bgr
|
449 |
return f"#{r:02x}{g:02x}{b:02x}"
|
450 |
|
451 |
# --------------------------------------------------------------------
|
452 |
+
# TAB: CONFIGURATION
|
453 |
# --------------------------------------------------------------------
|
454 |
def update_config(
|
455 |
enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
|
|
|
462 |
mesh_hex, contour_hex, iris_hex,
|
463 |
eye_color_text_hex
|
464 |
):
|
|
|
465 |
pl = load_pipeline()
|
466 |
cfg = pl.config
|
467 |
|
468 |
+
# Toggles
|
469 |
cfg.recognition['enable'] = enable_recognition
|
470 |
cfg.anti_spoof['enable'] = enable_antispoof
|
471 |
cfg.blink['enable'] = enable_blink
|
|
|
477 |
cfg.face_mesh_options['contours'] = show_contours
|
478 |
cfg.face_mesh_options['irises'] = show_irises
|
479 |
|
480 |
+
# Thresholds
|
481 |
cfg.detection_conf_thres = detection_conf
|
482 |
cfg.recognition_conf_thres = recognition_thresh
|
483 |
cfg.anti_spoof['lap_thresh'] = antispoof_thresh
|
|
|
485 |
cfg.hand['min_detection_confidence'] = hand_det_conf
|
486 |
cfg.hand['min_tracking_confidence'] = hand_track_conf
|
487 |
|
488 |
+
# Colors
|
489 |
+
cfg.bbox_color = hex_to_bgr(bbox_hex)[::-1]
|
490 |
cfg.spoofed_bbox_color = hex_to_bgr(spoofed_hex)[::-1]
|
491 |
cfg.unknown_bbox_color = hex_to_bgr(unknown_hex)[::-1]
|
492 |
cfg.eye_outline_color = hex_to_bgr(eye_hex)[::-1]
|
|
|
499 |
cfg.iris_color = hex_to_bgr(iris_hex)[::-1]
|
500 |
cfg.eye_color_text_color = hex_to_bgr(eye_color_text_hex)[::-1]
|
501 |
|
|
|
502 |
cfg.save(CONFIG_PATH)
|
|
|
503 |
return "Configuration saved successfully!"
|
504 |
|
505 |
# --------------------------------------------------------------------
|
506 |
+
# TAB: DATABASE MANAGEMENT
|
507 |
# --------------------------------------------------------------------
|
508 |
def enroll_user(name: str, images: List[np.ndarray]) -> str:
|
|
|
|
|
|
|
|
|
509 |
pl = load_pipeline()
|
510 |
if not name:
|
511 |
return "Please provide a user name."
|
|
|
517 |
for img in images:
|
518 |
if img is None:
|
519 |
continue
|
520 |
+
# Gradio typically supplies images in RGB
|
521 |
+
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
|
|
|
|
522 |
detections = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
523 |
for x1, y1, x2, y2, conf, cls in detections:
|
524 |
face_roi = img_bgr[y1:y2, x1:x2]
|
|
|
546 |
return f"No embeddings found for user '{name}'."
|
547 |
|
548 |
def search_by_image(image: np.ndarray) -> str:
|
|
|
|
|
|
|
549 |
pl = load_pipeline()
|
550 |
if image is None:
|
551 |
return "No image uploaded."
|
|
|
585 |
pl = load_pipeline()
|
586 |
labels = pl.db.list_labels()
|
587 |
if labels:
|
588 |
+
return "Enrolled users:\n" + ", ".join(labels)
|
589 |
return "No users enrolled."
|
590 |
|
591 |
# --------------------------------------------------------------------
|
592 |
+
# TAB: IMAGE-BASED RECOGNITION
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
593 |
# --------------------------------------------------------------------
|
594 |
def process_test_image(img: np.ndarray) -> Tuple[np.ndarray, str]:
|
595 |
if img is None:
|
|
|
605 |
# --------------------------------------------------------------------
|
606 |
def build_app():
|
607 |
with gr.Blocks() as demo:
|
608 |
+
gr.Markdown("# Face Recognition System (Image-Only)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
|
610 |
with gr.Tab("Image Test"):
|
611 |
+
gr.Markdown("Upload a single image for face detection & recognition:")
|
612 |
image_input = gr.Image(type="numpy", label="Upload Image")
|
613 |
image_out = gr.Image()
|
614 |
image_info = gr.Textbox(label="Detections", interactive=False)
|
|
|
621 |
)
|
622 |
|
623 |
with gr.Tab("Configuration"):
|
624 |
+
gr.Markdown("Modify pipeline settings & thresholds.")
|
625 |
+
|
626 |
with gr.Row():
|
627 |
enable_recognition = gr.Checkbox(label="Enable Face Recognition", value=True)
|
628 |
enable_antispoof = gr.Checkbox(label="Enable Anti-Spoof", value=True)
|
|
|
631 |
enable_eyecolor = gr.Checkbox(label="Enable Eye Color Detection", value=False)
|
632 |
enable_facemesh = gr.Checkbox(label="Enable Face Mesh", value=False)
|
633 |
|
634 |
+
gr.Markdown("**Face Mesh Options**")
|
635 |
with gr.Row():
|
636 |
show_tesselation = gr.Checkbox(label="Show Tesselation", value=False)
|
637 |
show_contours = gr.Checkbox(label="Show Contours", value=False)
|
|
|
660 |
mesh_hex = gr.Textbox(label="Mesh Color", value="#64ff64")
|
661 |
contour_hex = gr.Textbox(label="Contour Color", value="#c8c800")
|
662 |
iris_hex = gr.Textbox(label="Iris Color", value="#ff00ff")
|
|
|
663 |
eye_color_text_hex = gr.Textbox(label="Eye Color Text Color", value="#ffffff")
|
664 |
|
665 |
save_btn = gr.Button("Save Configuration")
|
|
|
668 |
save_btn.click(
|
669 |
fn=update_config,
|
670 |
inputs=[
|
671 |
+
enable_recognition, enable_antispoof, enable_blink, enable_hand,
|
672 |
+
enable_eyecolor, enable_facemesh,
|
673 |
show_tesselation, show_contours, show_irises,
|
674 |
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh,
|
675 |
hand_det_conf, hand_track_conf,
|
|
|
699 |
search_result = gr.Textbox(label="", interactive=False)
|
700 |
|
701 |
def update_search_visibility(mode):
|
702 |
+
# Show name dropdown if "Name", else show image upload
|
703 |
if mode == "Name":
|
704 |
return gr.update(visible=True), gr.update(visible=False)
|
705 |
else:
|
706 |
return gr.update(visible=False), gr.update(visible=True)
|
707 |
|
708 |
+
search_mode.change(
|
709 |
+
fn=update_search_visibility,
|
710 |
+
inputs=[search_mode],
|
711 |
+
outputs=[search_name_input, search_image_input]
|
712 |
+
)
|
713 |
|
714 |
def search_user(mode, name, img):
|
715 |
if mode == "Name":
|
|
|
717 |
else:
|
718 |
return search_by_image(img)
|
719 |
|
720 |
+
search_btn.click(
|
721 |
+
fn=search_user,
|
722 |
+
inputs=[search_mode, search_name_input, search_image_input],
|
723 |
+
outputs=[search_result]
|
724 |
+
)
|
725 |
|
726 |
with gr.Accordion("User Management Tools", open=False):
|
727 |
list_btn = gr.Button("List Enrolled Users")
|
728 |
list_output = gr.Textbox(label="", interactive=False)
|
729 |
list_btn.click(fn=lambda: list_users(), inputs=[], outputs=[list_output])
|
730 |
|
|
|
731 |
def get_user_list():
|
732 |
pl = load_pipeline()
|
733 |
return gr.update(choices=pl.db.list_labels())
|
734 |
|
|
|
735 |
refresh_users_btn = gr.Button("Refresh User List")
|
736 |
refresh_users_btn.click(fn=get_user_list, inputs=[], outputs=[search_name_input])
|
737 |
|
|
|
749 |
# --------------------------------------------------------------------
|
750 |
if __name__ == "__main__":
|
751 |
app = build_app()
|
752 |
+
# queue() is optional if you expect concurrency
|
753 |
app.queue().launch(server_name="0.0.0.0", server_port=7860)
|