Update app.py
Browse files
app.py
CHANGED
@@ -1,985 +1,6 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import math
|
4 |
-
import requests
|
5 |
-
import numpy as np
|
6 |
-
import cv2
|
7 |
-
import torch
|
8 |
-
import pickle
|
9 |
-
import logging
|
10 |
-
from PIL import Image
|
11 |
-
from typing import Optional, Dict, List, Tuple
|
12 |
-
from dataclasses import dataclass, field
|
13 |
-
from collections import Counter
|
14 |
-
|
15 |
import gradio as gr
|
|
|
16 |
|
17 |
-
|
18 |
-
from facenet_pytorch import InceptionResnetV1
|
19 |
-
from torchvision import transforms
|
20 |
-
from deep_sort_realtime.deepsort_tracker import DeepSort
|
21 |
-
|
22 |
-
import mediapipe as mp
|
23 |
-
|
24 |
-
logging.basicConfig(
|
25 |
-
level=logging.INFO,
|
26 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
27 |
-
handlers=[logging.FileHandler('face_pipeline.log'), logging.StreamHandler()],
|
28 |
-
)
|
29 |
-
logger = logging.getLogger(__name__)
|
30 |
-
|
31 |
-
logging.getLogger('torch').setLevel(logging.ERROR)
|
32 |
-
logging.getLogger('mediapipe').setLevel(logging.ERROR)
|
33 |
-
logging.getLogger('deep_sort_realtime').setLevel(logging.ERROR)
|
34 |
-
|
35 |
-
DEFAULT_MODEL_URL = "https://github.com/wuhplaptop/face-11-n/blob/main/face2.pt?raw=true"
|
36 |
-
DEFAULT_DB_PATH = os.path.expanduser("~/.face_pipeline/known_faces.pkl")
|
37 |
-
MODEL_DIR = os.path.expanduser("~/.face_pipeline/models")
|
38 |
-
CONFIG_PATH = os.path.expanduser("~/.face_pipeline/config.pkl")
|
39 |
-
|
40 |
-
LEFT_EYE_IDX = [33, 160, 158, 133, 153, 144]
|
41 |
-
RIGHT_EYE_IDX = [263, 387, 385, 362, 380, 373]
|
42 |
-
|
43 |
-
mp_drawing = mp.solutions.drawing_utils
|
44 |
-
mp_face_mesh = mp.solutions.face_mesh
|
45 |
-
mp_hands = mp.solutions.hands
|
46 |
-
|
47 |
-
@dataclass
|
48 |
-
class PipelineConfig:
|
49 |
-
detector: Dict = field(default_factory=dict)
|
50 |
-
tracker: Dict = field(default_factory=dict)
|
51 |
-
recognition: Dict = field(default_factory=dict)
|
52 |
-
anti_spoof: Dict = field(default_factory=dict)
|
53 |
-
blink: Dict = field(default_factory=dict)
|
54 |
-
face_mesh_options: Dict = field(default_factory=dict)
|
55 |
-
hand: Dict = field(default_factory=dict)
|
56 |
-
eye_color: Dict = field(default_factory=dict)
|
57 |
-
enabled_components: Dict = field(default_factory=dict)
|
58 |
-
|
59 |
-
detection_conf_thres: float = 0.4
|
60 |
-
recognition_conf_thres: float = 0.85
|
61 |
-
|
62 |
-
bbox_color: Tuple[int, int, int] = (0, 255, 0)
|
63 |
-
spoofed_bbox_color: Tuple[int, int, int] = (0, 0, 255)
|
64 |
-
unknown_bbox_color: Tuple[int, int, int] = (0, 0, 255)
|
65 |
-
eye_outline_color: Tuple[int, int, int] = (255, 255, 0)
|
66 |
-
blink_text_color: Tuple[int, int, int] = (0, 0, 255)
|
67 |
-
hand_landmark_color: Tuple[int, int, int] = (255, 210, 77)
|
68 |
-
hand_connection_color: Tuple[int, int, int] = (204, 102, 0)
|
69 |
-
hand_text_color: Tuple[int, int, int] = (255, 255, 255)
|
70 |
-
mesh_color: Tuple[int, int, int] = (100, 255, 100)
|
71 |
-
contour_color: Tuple[int, int, int] = (200, 200, 0)
|
72 |
-
iris_color: Tuple[int, int, int] = (255, 0, 255)
|
73 |
-
eye_color_text_color: Tuple[int, int, int] = (255, 255, 255)
|
74 |
-
|
75 |
-
def __post_init__(self):
|
76 |
-
self.detector = self.detector or {
|
77 |
-
'model_path': os.path.join(MODEL_DIR, "face2.pt"),
|
78 |
-
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
|
79 |
-
}
|
80 |
-
self.tracker = self.tracker or {'max_age': 30}
|
81 |
-
self.recognition = self.recognition or {'enable': True}
|
82 |
-
self.anti_spoof = self.anti_spoof or {'enable': True, 'lap_thresh': 80.0}
|
83 |
-
self.blink = self.blink or {'enable': True, 'ear_thresh': 0.25}
|
84 |
-
self.face_mesh_options = self.face_mesh_options or {
|
85 |
-
'enable': False,
|
86 |
-
'tesselation': False,
|
87 |
-
'contours': False,
|
88 |
-
'irises': False,
|
89 |
-
}
|
90 |
-
self.hand = self.hand or {
|
91 |
-
'enable': True,
|
92 |
-
'min_detection_confidence': 0.5,
|
93 |
-
'min_tracking_confidence': 0.5,
|
94 |
-
}
|
95 |
-
self.eye_color = self.eye_color or {'enable': False}
|
96 |
-
self.enabled_components = self.enabled_components or {
|
97 |
-
'detection': True,
|
98 |
-
'tracking': True,
|
99 |
-
'anti_spoof': True,
|
100 |
-
'recognition': True,
|
101 |
-
'blink': True,
|
102 |
-
'face_mesh': False,
|
103 |
-
'hand': True,
|
104 |
-
'eye_color': False,
|
105 |
-
}
|
106 |
-
|
107 |
-
def save(self, path: str):
|
108 |
-
try:
|
109 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
110 |
-
with open(path, 'wb') as f:
|
111 |
-
pickle.dump(self.__dict__, f)
|
112 |
-
logger.info(f"Saved config to {path}")
|
113 |
-
except Exception as e:
|
114 |
-
logger.error(f"Config save failed: {str(e)}")
|
115 |
-
raise RuntimeError(f"Config save failed: {str(e)}") from e
|
116 |
-
|
117 |
-
@classmethod
|
118 |
-
def load(cls, path: str) -> 'PipelineConfig':
|
119 |
-
try:
|
120 |
-
if os.path.exists(path):
|
121 |
-
with open(path, 'rb') as f:
|
122 |
-
data = pickle.load(f)
|
123 |
-
return cls(**data)
|
124 |
-
return cls()
|
125 |
-
except Exception as e:
|
126 |
-
logger.error(f"Config load failed: {str(e)}")
|
127 |
-
return cls()
|
128 |
-
|
129 |
-
class FaceDatabase:
|
130 |
-
def __init__(self, db_path: str = DEFAULT_DB_PATH):
|
131 |
-
self.db_path = db_path
|
132 |
-
self.embeddings: Dict[str, List[np.ndarray]] = {}
|
133 |
-
self._load()
|
134 |
-
|
135 |
-
def _load(self):
|
136 |
-
try:
|
137 |
-
if os.path.exists(self.db_path):
|
138 |
-
with open(self.db_path, 'rb') as f:
|
139 |
-
self.embeddings = pickle.load(f)
|
140 |
-
logger.info(f"Loaded database from {self.db_path}")
|
141 |
-
except Exception as e:
|
142 |
-
logger.error(f"Database load failed: {str(e)}")
|
143 |
-
self.embeddings = {}
|
144 |
-
|
145 |
-
def save(self):
|
146 |
-
try:
|
147 |
-
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
|
148 |
-
with open(self.db_path, 'wb') as f:
|
149 |
-
pickle.dump(self.embeddings, f)
|
150 |
-
logger.info(f"Saved database to {self.db_path}")
|
151 |
-
except Exception as e:
|
152 |
-
logger.error(f"Database save failed: {str(e)}")
|
153 |
-
raise RuntimeError(f"Database save failed: {str(e)}") from e
|
154 |
-
|
155 |
-
def add_embedding(self, label: str, embedding: np.ndarray):
|
156 |
-
try:
|
157 |
-
if not isinstance(embedding, np.ndarray) or embedding.ndim != 1:
|
158 |
-
raise ValueError("Invalid embedding format")
|
159 |
-
if label not in self.embeddings:
|
160 |
-
self.embeddings[label] = []
|
161 |
-
self.embeddings[label].append(embedding)
|
162 |
-
logger.debug(f"Added embedding for {label}")
|
163 |
-
except Exception as e:
|
164 |
-
logger.error(f"Add embedding failed: {str(e)}")
|
165 |
-
raise
|
166 |
-
|
167 |
-
def remove_label(self, label: str):
|
168 |
-
try:
|
169 |
-
if label in self.embeddings:
|
170 |
-
del self.embeddings[label]
|
171 |
-
logger.info(f"Removed {label}")
|
172 |
-
else:
|
173 |
-
logger.warning(f"Label {label} not found")
|
174 |
-
except Exception as e:
|
175 |
-
logger.error(f"Remove label failed: {str(e)}")
|
176 |
-
raise
|
177 |
-
|
178 |
-
def list_labels(self) -> List[str]:
|
179 |
-
return list(self.embeddings.keys())
|
180 |
-
|
181 |
-
def get_embeddings_by_label(self, label: str) -> Optional[List[np.ndarray]]:
|
182 |
-
return self.embeddings.get(label)
|
183 |
-
|
184 |
-
def search_by_image(self, query_embedding: np.ndarray, threshold: float = 0.7) -> List[Tuple[str, float]]:
|
185 |
-
results = []
|
186 |
-
for lbl, embs in self.embeddings.items():
|
187 |
-
for db_emb in embs:
|
188 |
-
similarity = FacePipeline.cosine_similarity(query_embedding, db_emb)
|
189 |
-
if similarity >= threshold:
|
190 |
-
results.append((lbl, similarity))
|
191 |
-
return sorted(results, key=lambda x: x[1], reverse=True)
|
192 |
-
|
193 |
-
class YOLOFaceDetector:
|
194 |
-
def __init__(self, model_path: str, device: str = 'cpu'):
|
195 |
-
self.model = None
|
196 |
-
self.device = device
|
197 |
-
try:
|
198 |
-
if not os.path.exists(model_path):
|
199 |
-
logger.info(f"Model not found at {model_path}. Downloading from GitHub...")
|
200 |
-
resp = requests.get(DEFAULT_MODEL_URL)
|
201 |
-
resp.raise_for_status()
|
202 |
-
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
203 |
-
with open(model_path, 'wb') as f:
|
204 |
-
f.write(resp.content)
|
205 |
-
logger.info(f"Downloaded YOLO model to {model_path}")
|
206 |
-
|
207 |
-
self.model = YOLO(model_path)
|
208 |
-
self.model.to(device)
|
209 |
-
logger.info(f"Loaded YOLO model from {model_path}")
|
210 |
-
except Exception as e:
|
211 |
-
logger.error(f"YOLO init failed: {str(e)}")
|
212 |
-
raise
|
213 |
-
|
214 |
-
def detect(self, image: np.ndarray, conf_thres: float) -> List[Tuple[int, int, int, int, float, int]]:
|
215 |
-
try:
|
216 |
-
results = self.model.predict(
|
217 |
-
source=image, conf=conf_thres, verbose=False, device=self.device
|
218 |
-
)
|
219 |
-
detections = []
|
220 |
-
for result in results:
|
221 |
-
for box in result.boxes:
|
222 |
-
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
223 |
-
conf = float(box.conf[0].cpu().numpy())
|
224 |
-
cls = int(box.cls[0].cpu().numpy()) if box.cls is not None else 0
|
225 |
-
detections.append((int(x1), int(y1), int(x2), int(y2), conf, cls))
|
226 |
-
logger.debug(f"Detected {len(detections)} faces.")
|
227 |
-
return detections
|
228 |
-
except Exception as e:
|
229 |
-
logger.error(f"Detection error: {str(e)}")
|
230 |
-
return []
|
231 |
-
|
232 |
-
class FaceTracker:
|
233 |
-
def __init__(self, max_age: int = 30):
|
234 |
-
self.tracker = DeepSort(max_age=max_age, embedder='mobilenet')
|
235 |
-
|
236 |
-
def update(self, detections: List[Tuple], frame: np.ndarray):
|
237 |
-
try:
|
238 |
-
ds_detections = [
|
239 |
-
([x1, y1, x2 - x1, y2 - y1], conf, cls)
|
240 |
-
for (x1, y1, x2, y2, conf, cls) in detections
|
241 |
-
]
|
242 |
-
tracks = self.tracker.update_tracks(ds_detections, frame=frame)
|
243 |
-
logger.debug(f"Updated tracker with {len(tracks)} tracks.")
|
244 |
-
return tracks
|
245 |
-
except Exception as e:
|
246 |
-
logger.error(f"Tracking error: {str(e)}")
|
247 |
-
return []
|
248 |
-
|
249 |
-
class FaceNetEmbedder:
|
250 |
-
def __init__(self, device: str = 'cpu'):
|
251 |
-
self.device = device
|
252 |
-
self.model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
253 |
-
self.transform = transforms.Compose([
|
254 |
-
transforms.Resize((160, 160)),
|
255 |
-
transforms.ToTensor(),
|
256 |
-
transforms.Normalize([0.5]*3, [0.5]*3),
|
257 |
-
])
|
258 |
-
|
259 |
-
def get_embedding(self, face_bgr: np.ndarray) -> Optional[np.ndarray]:
|
260 |
-
try:
|
261 |
-
face_rgb = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2RGB)
|
262 |
-
pil_img = Image.fromarray(face_rgb).convert('RGB')
|
263 |
-
tens = self.transform(pil_img).unsqueeze(0).to(self.device)
|
264 |
-
with torch.no_grad():
|
265 |
-
embedding = self.model(tens)[0].cpu().numpy()
|
266 |
-
logger.debug(f"Generated embedding sample: {embedding[:5]}...")
|
267 |
-
return embedding
|
268 |
-
except Exception as e:
|
269 |
-
logger.error(f"Embedding failed: {str(e)}")
|
270 |
-
return None
|
271 |
-
|
272 |
-
def detect_blink(face_roi: np.ndarray, threshold: float = 0.25) -> Tuple[bool, float, float, np.ndarray, np.ndarray]:
|
273 |
-
"""
|
274 |
-
Returns:
|
275 |
-
(blink_bool, left_ear, right_ear, left_eye_points, right_eye_points).
|
276 |
-
"""
|
277 |
-
try:
|
278 |
-
face_mesh_proc = mp_face_mesh.FaceMesh(
|
279 |
-
static_image_mode=True,
|
280 |
-
max_num_faces=1,
|
281 |
-
refine_landmarks=True,
|
282 |
-
min_detection_confidence=0.5
|
283 |
-
)
|
284 |
-
result = face_mesh_proc.process(cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB))
|
285 |
-
face_mesh_proc.close()
|
286 |
-
|
287 |
-
if not result.multi_face_landmarks:
|
288 |
-
return False, 0.0, 0.0, None, None
|
289 |
-
|
290 |
-
landmarks = result.multi_face_landmarks[0].landmark
|
291 |
-
h, w = face_roi.shape[:2]
|
292 |
-
|
293 |
-
def eye_aspect_ratio(indices):
|
294 |
-
pts = [(landmarks[i].x * w, landmarks[i].y * h) for i in indices]
|
295 |
-
vertical = np.linalg.norm(np.array(pts[1]) - np.array(pts[5])) + \
|
296 |
-
np.linalg.norm(np.array(pts[2]) - np.array(pts[4]))
|
297 |
-
horizontal = np.linalg.norm(np.array(pts[0]) - np.array(pts[3]))
|
298 |
-
return vertical / (2.0 * horizontal + 1e-6)
|
299 |
-
|
300 |
-
left_ear = eye_aspect_ratio(LEFT_EYE_IDX)
|
301 |
-
right_ear = eye_aspect_ratio(RIGHT_EYE_IDX)
|
302 |
-
|
303 |
-
blink = (left_ear < threshold) and (right_ear < threshold)
|
304 |
-
|
305 |
-
left_eye_pts = np.array([(int(landmarks[i].x * w), int(landmarks[i].y * h)) for i in LEFT_EYE_IDX])
|
306 |
-
right_eye_pts = np.array([(int(landmarks[i].x * w), int(landmarks[i].y * h)) for i in RIGHT_EYE_IDX])
|
307 |
-
|
308 |
-
return blink, left_ear, right_ear, left_eye_pts, right_eye_pts
|
309 |
-
|
310 |
-
except Exception as e:
|
311 |
-
logger.error(f"Blink detection error: {str(e)}")
|
312 |
-
return False, 0.0, 0.0, None, None
|
313 |
-
|
314 |
-
def process_face_mesh(face_roi: np.ndarray):
|
315 |
-
try:
|
316 |
-
fm_proc = mp_face_mesh.FaceMesh(
|
317 |
-
static_image_mode=True,
|
318 |
-
max_num_faces=1,
|
319 |
-
refine_landmarks=True,
|
320 |
-
min_detection_confidence=0.5
|
321 |
-
)
|
322 |
-
result = fm_proc.process(cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB))
|
323 |
-
fm_proc.close()
|
324 |
-
if result.multi_face_landmarks:
|
325 |
-
return result.multi_face_landmarks[0]
|
326 |
-
return None
|
327 |
-
except Exception as e:
|
328 |
-
logger.error(f"Face mesh error: {str(e)}")
|
329 |
-
return None
|
330 |
-
|
331 |
-
def draw_face_mesh(image: np.ndarray, face_landmarks, config: Dict, pipeline_config: PipelineConfig):
|
332 |
-
mesh_color_bgr = pipeline_config.mesh_color[::-1]
|
333 |
-
contour_color_bgr = pipeline_config.contour_color[::-1]
|
334 |
-
iris_color_bgr = pipeline_config.iris_color[::-1]
|
335 |
-
|
336 |
-
if config.get('tesselation'):
|
337 |
-
mp_drawing.draw_landmarks(
|
338 |
-
image,
|
339 |
-
face_landmarks,
|
340 |
-
mp_face_mesh.FACEMESH_TESSELATION,
|
341 |
-
landmark_drawing_spec=mp_drawing.DrawingSpec(color=mesh_color_bgr, thickness=1, circle_radius=1),
|
342 |
-
connection_drawing_spec=mp_drawing.DrawingSpec(color=mesh_color_bgr, thickness=1),
|
343 |
-
)
|
344 |
-
if config.get('contours'):
|
345 |
-
mp_drawing.draw_landmarks(
|
346 |
-
image,
|
347 |
-
face_landmarks,
|
348 |
-
mp_face_mesh.FACEMESH_CONTOURS,
|
349 |
-
landmark_drawing_spec=None,
|
350 |
-
connection_drawing_spec=mp_drawing.DrawingSpec(color=contour_color_bgr, thickness=2)
|
351 |
-
)
|
352 |
-
if config.get('irises'):
|
353 |
-
mp_drawing.draw_landmarks(
|
354 |
-
image,
|
355 |
-
face_landmarks,
|
356 |
-
mp_face_mesh.FACEMESH_IRISES,
|
357 |
-
landmark_drawing_spec=None,
|
358 |
-
connection_drawing_spec=mp_drawing.DrawingSpec(color=iris_color_bgr, thickness=2)
|
359 |
-
)
|
360 |
-
|
361 |
-
EYE_COLOR_RANGES = {
|
362 |
-
"amber": (255, 191, 0),
|
363 |
-
"blue": (0, 0, 255),
|
364 |
-
"brown": (139, 69, 19),
|
365 |
-
"green": (0, 128, 0),
|
366 |
-
"gray": (128, 128, 128),
|
367 |
-
"hazel": (102, 51, 0),
|
368 |
-
}
|
369 |
-
|
370 |
-
def classify_eye_color(rgb_color: Tuple[int,int,int]) -> str:
|
371 |
-
if rgb_color is None:
|
372 |
-
return "Unknown"
|
373 |
-
min_dist = float('inf')
|
374 |
-
best = "Unknown"
|
375 |
-
for color_name, ref_rgb in EYE_COLOR_RANGES.items():
|
376 |
-
dist = math.sqrt(sum([(a-b)**2 for a,b in zip(rgb_color, ref_rgb)]))
|
377 |
-
if dist < min_dist:
|
378 |
-
min_dist = dist
|
379 |
-
best = color_name
|
380 |
-
return best
|
381 |
-
|
382 |
-
def get_dominant_color(image_roi, k=3):
|
383 |
-
if image_roi.size == 0:
|
384 |
-
return None
|
385 |
-
pixels = np.float32(image_roi.reshape(-1, 3))
|
386 |
-
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.1)
|
387 |
-
_, labels, palette = cv2.kmeans(pixels, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
|
388 |
-
_, counts = np.unique(labels, return_counts=True)
|
389 |
-
dom_color = tuple(palette[np.argmax(counts)].astype(int).tolist())
|
390 |
-
return dom_color
|
391 |
-
|
392 |
-
def detect_eye_color(face_roi: np.ndarray, face_landmarks) -> Optional[str]:
|
393 |
-
if face_landmarks is None:
|
394 |
-
return None
|
395 |
-
h, w = face_roi.shape[:2]
|
396 |
-
iris_inds = set()
|
397 |
-
for conn in mp_face_mesh.FACEMESH_IRISES:
|
398 |
-
iris_inds.update(conn)
|
399 |
-
|
400 |
-
iris_points = []
|
401 |
-
for idx in iris_inds:
|
402 |
-
lm = face_landmarks.landmark[idx]
|
403 |
-
iris_points.append((int(lm.x * w), int(lm.y * h)))
|
404 |
-
if not iris_points:
|
405 |
-
return None
|
406 |
-
|
407 |
-
min_x = min(pt[0] for pt in iris_points)
|
408 |
-
max_x = max(pt[0] for pt in iris_points)
|
409 |
-
min_y = min(pt[1] for pt in iris_points)
|
410 |
-
max_y = max(pt[1] for pt in iris_points)
|
411 |
-
|
412 |
-
pad = 5
|
413 |
-
x1 = max(0, min_x - pad)
|
414 |
-
y1 = max(0, min_y - pad)
|
415 |
-
x2 = min(w, max_x + pad)
|
416 |
-
y2 = min(h, max_y + pad)
|
417 |
-
|
418 |
-
eye_roi = face_roi[y1:y2, x1:x2]
|
419 |
-
|
420 |
-
eye_roi_resize = cv2.resize(eye_roi, (40, 40), interpolation=cv2.INTER_AREA)
|
421 |
-
|
422 |
-
if eye_roi_resize.size == 0:
|
423 |
-
return None
|
424 |
-
|
425 |
-
dom_rgb = get_dominant_color(eye_roi_resize)
|
426 |
-
if dom_rgb is not None:
|
427 |
-
return classify_eye_color(dom_rgb)
|
428 |
-
return None
|
429 |
-
|
430 |
-
class HandTracker:
|
431 |
-
def __init__(self, min_detection_confidence=0.5, min_tracking_confidence=0.5):
|
432 |
-
self.hands = mp_hands.Hands(
|
433 |
-
static_image_mode=True,
|
434 |
-
max_num_hands=2,
|
435 |
-
min_detection_confidence=min_detection_confidence,
|
436 |
-
min_tracking_confidence=min_tracking_confidence,
|
437 |
-
)
|
438 |
-
logger.info("Initialized Mediapipe HandTracking")
|
439 |
-
|
440 |
-
def detect_hands(self, image: np.ndarray):
|
441 |
-
try:
|
442 |
-
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
443 |
-
results = self.hands.process(img_rgb)
|
444 |
-
return results.multi_hand_landmarks, results.multi_handedness
|
445 |
-
except Exception as e:
|
446 |
-
logger.error(f"Hand detection error: {str(e)}")
|
447 |
-
return None, None
|
448 |
-
|
449 |
-
def draw_hands(self, image: np.ndarray, hand_landmarks, handedness, config):
|
450 |
-
if not hand_landmarks:
|
451 |
-
return image
|
452 |
-
|
453 |
-
mpdraw = mp_drawing
|
454 |
-
for i, hlms in enumerate(hand_landmarks):
|
455 |
-
|
456 |
-
hl_color = config.hand_landmark_color[::-1]
|
457 |
-
hc_color = config.hand_connection_color[::-1]
|
458 |
-
mpdraw.draw_landmarks(
|
459 |
-
image,
|
460 |
-
hlms,
|
461 |
-
mp_hands.HAND_CONNECTIONS,
|
462 |
-
mpdraw.DrawingSpec(color=hl_color, thickness=2, circle_radius=4),
|
463 |
-
mpdraw.DrawingSpec(color=hc_color, thickness=2, circle_radius=2),
|
464 |
-
)
|
465 |
-
if handedness and i < len(handedness):
|
466 |
-
label = handedness[i].classification[0].label
|
467 |
-
score = handedness[i].classification[0].score
|
468 |
-
text = f"{label}: {score:.2f}"
|
469 |
-
|
470 |
-
wrist_lm = hlms.landmark[mp_hands.HandLandmark.WRIST]
|
471 |
-
h, w, _ = image.shape
|
472 |
-
cx, cy = int(wrist_lm.x * w), int(wrist_lm.y * h)
|
473 |
-
ht_color = config.hand_text_color[::-1]
|
474 |
-
cv2.putText(image, text, (cx, cy - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ht_color, 2)
|
475 |
-
return image
|
476 |
-
|
477 |
-
class FacePipeline:
|
478 |
-
def __init__(self, config: PipelineConfig):
|
479 |
-
self.config = config
|
480 |
-
self.detector = None
|
481 |
-
self.tracker = None
|
482 |
-
self.facenet = None
|
483 |
-
self.db = None
|
484 |
-
self.hand_tracker = None
|
485 |
-
self._initialized = False
|
486 |
-
|
487 |
-
def initialize(self):
|
488 |
-
try:
|
489 |
-
|
490 |
-
self.detector = YOLOFaceDetector(
|
491 |
-
model_path=self.config.detector['model_path'],
|
492 |
-
device=self.config.detector['device']
|
493 |
-
)
|
494 |
-
|
495 |
-
self.tracker = FaceTracker(max_age=self.config.tracker['max_age'])
|
496 |
-
|
497 |
-
self.facenet = FaceNetEmbedder(device=self.config.detector['device'])
|
498 |
-
|
499 |
-
self.db = FaceDatabase()
|
500 |
-
|
501 |
-
if self.config.hand['enable']:
|
502 |
-
self.hand_tracker = HandTracker(
|
503 |
-
min_detection_confidence=self.config.hand['min_detection_confidence'],
|
504 |
-
min_tracking_confidence=self.config.hand['min_tracking_confidence']
|
505 |
-
)
|
506 |
-
|
507 |
-
self._initialized = True
|
508 |
-
logger.info("FacePipeline initialized successfully.")
|
509 |
-
except Exception as e:
|
510 |
-
logger.error(f"Initialization failed: {str(e)}")
|
511 |
-
self._initialized = False
|
512 |
-
raise
|
513 |
-
|
514 |
-
def process_frame(self, frame: np.ndarray) -> Tuple[np.ndarray, List[Dict]]:
|
515 |
-
"""
|
516 |
-
Main pipeline processing: detection, tracking, hand detection, face mesh, blink detection, etc.
|
517 |
-
Returns annotated_frame, detection_results.
|
518 |
-
"""
|
519 |
-
if not self._initialized:
|
520 |
-
logger.error("Pipeline not initialized.")
|
521 |
-
return frame, []
|
522 |
-
|
523 |
-
try:
|
524 |
-
|
525 |
-
detections = self.detector.detect(frame, self.config.detection_conf_thres)
|
526 |
-
tracked_objs = self.tracker.update(detections, frame)
|
527 |
-
annotated = frame.copy()
|
528 |
-
results = []
|
529 |
-
|
530 |
-
hand_landmarks_list = None
|
531 |
-
handedness_list = None
|
532 |
-
if self.config.hand['enable'] and self.hand_tracker:
|
533 |
-
hand_landmarks_list, handedness_list = self.hand_tracker.detect_hands(annotated)
|
534 |
-
annotated = self.hand_tracker.draw_hands(
|
535 |
-
annotated, hand_landmarks_list, handedness_list, self.config
|
536 |
-
)
|
537 |
-
|
538 |
-
for obj in tracked_objs:
|
539 |
-
if not obj.is_confirmed():
|
540 |
-
continue
|
541 |
-
|
542 |
-
track_id = obj.track_id
|
543 |
-
bbox = obj.to_tlbr().astype(int)
|
544 |
-
x1, y1, x2, y2 = bbox
|
545 |
-
conf = getattr(obj, 'score', 1.0)
|
546 |
-
cls = getattr(obj, 'class_id', 0)
|
547 |
-
|
548 |
-
face_roi = frame[y1:y2, x1:x2]
|
549 |
-
if face_roi.size == 0:
|
550 |
-
logger.warning(f"Empty face ROI for track={track_id}")
|
551 |
-
continue
|
552 |
-
|
553 |
-
is_spoofed = False
|
554 |
-
if self.config.anti_spoof.get('enable', True):
|
555 |
-
is_spoofed = not self.is_real_face(face_roi)
|
556 |
-
if is_spoofed:
|
557 |
-
cls = 1
|
558 |
-
|
559 |
-
if is_spoofed:
|
560 |
-
box_color_bgr = self.config.spoofed_bbox_color[::-1]
|
561 |
-
name = "Spoofed"
|
562 |
-
similarity = 0.0
|
563 |
-
else:
|
564 |
-
|
565 |
-
emb = self.facenet.get_embedding(face_roi)
|
566 |
-
if emb is not None and self.config.recognition.get('enable', True):
|
567 |
-
name, similarity = self.recognize_face(emb, self.config.recognition_conf_thres)
|
568 |
-
else:
|
569 |
-
name = "Unknown"
|
570 |
-
similarity = 0.0
|
571 |
-
|
572 |
-
box_color_rgb = (self.config.bbox_color if name != "Unknown"
|
573 |
-
else self.config.unknown_bbox_color)
|
574 |
-
box_color_bgr = box_color_rgb[::-1]
|
575 |
-
|
576 |
-
label_text = name
|
577 |
-
cv2.rectangle(annotated, (x1, y1), (x2, y2), box_color_bgr, 2)
|
578 |
-
cv2.putText(annotated, label_text, (x1, y1 - 10),
|
579 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color_bgr, 2)
|
580 |
-
|
581 |
-
blink = False
|
582 |
-
if self.config.blink.get('enable', False):
|
583 |
-
blink, left_ear, right_ear, left_eye_pts, right_eye_pts = detect_blink(
|
584 |
-
face_roi, threshold=self.config.blink.get('ear_thresh', 0.25)
|
585 |
-
)
|
586 |
-
if left_eye_pts is not None and right_eye_pts is not None:
|
587 |
-
|
588 |
-
le_g = left_eye_pts + np.array([x1, y1])
|
589 |
-
re_g = right_eye_pts + np.array([x1, y1])
|
590 |
-
|
591 |
-
eye_outline_bgr = self.config.eye_outline_color[::-1]
|
592 |
-
cv2.polylines(annotated, [le_g], True, eye_outline_bgr, 1)
|
593 |
-
cv2.polylines(annotated, [re_g], True, eye_outline_bgr, 1)
|
594 |
-
if blink:
|
595 |
-
blink_msg_color = self.config.blink_text_color[::-1]
|
596 |
-
cv2.putText(annotated, "Blink Detected",
|
597 |
-
(x1, y2 + 20),
|
598 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5,
|
599 |
-
blink_msg_color, 2)
|
600 |
-
|
601 |
-
face_mesh_landmarks = None
|
602 |
-
eye_color_name = None
|
603 |
-
if (self.config.face_mesh_options.get('enable') or
|
604 |
-
self.config.eye_color.get('enable')):
|
605 |
-
face_mesh_landmarks = process_face_mesh(face_roi)
|
606 |
-
if face_mesh_landmarks:
|
607 |
-
|
608 |
-
if self.config.face_mesh_options.get('enable', False):
|
609 |
-
draw_face_mesh(
|
610 |
-
annotated[y1:y2, x1:x2],
|
611 |
-
face_mesh_landmarks,
|
612 |
-
self.config.face_mesh_options,
|
613 |
-
self.config
|
614 |
-
)
|
615 |
-
|
616 |
-
if self.config.eye_color.get('enable', False):
|
617 |
-
color_found = detect_eye_color(face_roi, face_mesh_landmarks)
|
618 |
-
if color_found:
|
619 |
-
eye_color_name = color_found
|
620 |
-
text_col_bgr = self.config.eye_color_text_color[::-1]
|
621 |
-
cv2.putText(
|
622 |
-
annotated, f"Eye Color: {eye_color_name}",
|
623 |
-
(x1, y2 + 40),
|
624 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5,
|
625 |
-
text_col_bgr, 2
|
626 |
-
)
|
627 |
-
|
628 |
-
detection_info = {
|
629 |
-
"track_id": track_id,
|
630 |
-
"bbox": (x1, y1, x2, y2),
|
631 |
-
"confidence": float(conf),
|
632 |
-
"class_id": cls,
|
633 |
-
"name": name,
|
634 |
-
"similarity": similarity,
|
635 |
-
"blink": blink if self.config.blink.get('enable') else None,
|
636 |
-
"face_mesh": bool(face_mesh_landmarks) if self.config.face_mesh_options.get('enable') else False,
|
637 |
-
"hands_detected": bool(hand_landmarks_list),
|
638 |
-
"hand_count": len(hand_landmarks_list) if hand_landmarks_list else 0,
|
639 |
-
"eye_color": eye_color_name if self.config.eye_color.get('enable') else None
|
640 |
-
}
|
641 |
-
results.append(detection_info)
|
642 |
-
|
643 |
-
return annotated, results
|
644 |
-
|
645 |
-
except Exception as e:
|
646 |
-
logger.error(f"Frame process error: {str(e)}")
|
647 |
-
return frame, []
|
648 |
-
|
649 |
-
def is_real_face(self, face_roi: np.ndarray) -> bool:
|
650 |
-
try:
|
651 |
-
gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY)
|
652 |
-
lapv = cv2.Laplacian(gray, cv2.CV_64F).var()
|
653 |
-
return lapv > self.config.anti_spoof.get('lap_thresh', 80.0)
|
654 |
-
except Exception as e:
|
655 |
-
logger.error(f"Anti-spoof error: {str(e)}")
|
656 |
-
return False
|
657 |
-
|
658 |
-
def recognize_face(self, embedding: np.ndarray, threshold: float) -> Tuple[str, float]:
|
659 |
-
try:
|
660 |
-
best_name = "Unknown"
|
661 |
-
best_sim = 0.0
|
662 |
-
for lbl, embs in self.db.embeddings.items():
|
663 |
-
for db_emb in embs:
|
664 |
-
sim = FacePipeline.cosine_similarity(embedding, db_emb)
|
665 |
-
if sim > best_sim:
|
666 |
-
best_sim = sim
|
667 |
-
best_name = lbl
|
668 |
-
if best_sim < threshold:
|
669 |
-
best_name = "Unknown"
|
670 |
-
return best_name, best_sim
|
671 |
-
except Exception as e:
|
672 |
-
logger.error(f"Recognition error: {str(e)}")
|
673 |
-
return ("Unknown", 0.0)
|
674 |
-
|
675 |
-
@staticmethod
|
676 |
-
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
|
677 |
-
return float(np.dot(a, b) / ((np.linalg.norm(a)*np.linalg.norm(b)) + 1e-6))
|
678 |
-
|
679 |
-
pipeline = None
|
680 |
-
def load_pipeline() -> FacePipeline:
|
681 |
-
global pipeline
|
682 |
-
if pipeline is None:
|
683 |
-
cfg = PipelineConfig.load(CONFIG_PATH)
|
684 |
-
pipeline = FacePipeline(cfg)
|
685 |
-
pipeline.initialize()
|
686 |
-
return pipeline
|
687 |
-
|
688 |
-
def hex_to_bgr(hexstr: str) -> Tuple[int,int,int]:
|
689 |
-
if not hexstr.startswith('#'):
|
690 |
-
hexstr = '#' + hexstr
|
691 |
-
h = hexstr.lstrip('#')
|
692 |
-
if len(h) != 6:
|
693 |
-
return (255, 0, 0)
|
694 |
-
r = int(h[0:2], 16)
|
695 |
-
g = int(h[2:4], 16)
|
696 |
-
b = int(h[4:6], 16)
|
697 |
-
return (b,g,r)
|
698 |
-
|
699 |
-
def bgr_to_hex(bgr: Tuple[int,int,int]) -> str:
|
700 |
-
b,g,r = bgr
|
701 |
-
return f"#{r:02x}{g:02x}{b:02x}"
|
702 |
-
|
703 |
-
def update_config(
|
704 |
-
|
705 |
-
enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
|
706 |
-
show_tesselation, show_contours, show_irises,
|
707 |
-
|
708 |
-
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh, hand_det_conf, hand_track_conf,
|
709 |
-
|
710 |
-
bbox_hex, spoofed_hex, unknown_hex, eye_hex, blink_hex,
|
711 |
-
hand_landmark_hex, hand_connect_hex, hand_text_hex,
|
712 |
-
mesh_hex, contour_hex, iris_hex, eye_color_text_hex
|
713 |
-
):
|
714 |
-
pl = load_pipeline()
|
715 |
-
cfg = pl.config
|
716 |
-
|
717 |
-
cfg.recognition['enable'] = enable_recognition
|
718 |
-
cfg.anti_spoof['enable'] = enable_antispoof
|
719 |
-
cfg.blink['enable'] = enable_blink
|
720 |
-
cfg.hand['enable'] = enable_hand
|
721 |
-
cfg.eye_color['enable'] = enable_eyecolor
|
722 |
-
cfg.face_mesh_options['enable'] = enable_facemesh
|
723 |
-
|
724 |
-
cfg.face_mesh_options['tesselation'] = show_tesselation
|
725 |
-
cfg.face_mesh_options['contours'] = show_contours
|
726 |
-
cfg.face_mesh_options['irises'] = show_irises
|
727 |
-
|
728 |
-
cfg.detection_conf_thres = detection_conf
|
729 |
-
cfg.recognition_conf_thres = recognition_thresh
|
730 |
-
cfg.anti_spoof['lap_thresh'] = antispoof_thresh
|
731 |
-
cfg.blink['ear_thresh'] = blink_thresh
|
732 |
-
cfg.hand['min_detection_confidence'] = hand_det_conf
|
733 |
-
cfg.hand['min_tracking_confidence'] = hand_track_conf
|
734 |
-
|
735 |
-
cfg.bbox_color = hex_to_bgr(bbox_hex)[::-1]
|
736 |
-
cfg.spoofed_bbox_color = hex_to_bgr(spoofed_hex)[::-1]
|
737 |
-
cfg.unknown_bbox_color = hex_to_bgr(unknown_hex)[::-1]
|
738 |
-
cfg.eye_outline_color = hex_to_bgr(eye_hex)[::-1]
|
739 |
-
cfg.blink_text_color = hex_to_bgr(blink_hex)[::-1]
|
740 |
-
cfg.hand_landmark_color = hex_to_bgr(hand_landmark_hex)[::-1]
|
741 |
-
cfg.hand_connection_color = hex_to_bgr(hand_connect_hex)[::-1]
|
742 |
-
cfg.hand_text_color = hex_to_bgr(hand_text_hex)[::-1]
|
743 |
-
cfg.mesh_color = hex_to_bgr(mesh_hex)[::-1]
|
744 |
-
cfg.contour_color = hex_to_bgr(contour_hex)[::-1]
|
745 |
-
cfg.iris_color = hex_to_bgr(iris_hex)[::-1]
|
746 |
-
cfg.eye_color_text_color = hex_to_bgr(eye_color_text_hex)[::-1]
|
747 |
-
|
748 |
-
cfg.save(CONFIG_PATH)
|
749 |
-
return "Configuration saved successfully!"
|
750 |
-
|
751 |
-
def enroll_user(label_name: str, filepaths: List[str]) -> str:
|
752 |
-
"""Enrolls a user by name using multiple image file paths."""
|
753 |
-
pl = load_pipeline()
|
754 |
-
if not label_name:
|
755 |
-
return "Please provide a user name."
|
756 |
-
if not filepaths or len(filepaths) == 0:
|
757 |
-
return "No images provided."
|
758 |
-
|
759 |
-
enrolled_count = 0
|
760 |
-
for path in filepaths:
|
761 |
-
if not os.path.isfile(path):
|
762 |
-
continue
|
763 |
-
img_bgr = cv2.imread(path)
|
764 |
-
if img_bgr is None:
|
765 |
-
continue
|
766 |
-
|
767 |
-
dets = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
768 |
-
for x1, y1, x2, y2, conf, cls in dets:
|
769 |
-
roi = img_bgr[y1:y2, x1:x2]
|
770 |
-
if roi.size == 0:
|
771 |
-
continue
|
772 |
-
emb = pl.facenet.get_embedding(roi)
|
773 |
-
if emb is not None:
|
774 |
-
pl.db.add_embedding(label_name, emb)
|
775 |
-
enrolled_count += 1
|
776 |
-
|
777 |
-
if enrolled_count > 0:
|
778 |
-
pl.db.save()
|
779 |
-
return f"Enrolled '{label_name}' with {enrolled_count} face(s)!"
|
780 |
-
else:
|
781 |
-
return "No faces detected in provided images."
|
782 |
-
|
783 |
-
def search_by_name(name: str) -> str:
|
784 |
-
pl = load_pipeline()
|
785 |
-
if not name:
|
786 |
-
return "No name entered."
|
787 |
-
embs = pl.db.get_embeddings_by_label(name)
|
788 |
-
if embs:
|
789 |
-
return f"'{name}' found with {len(embs)} embedding(s)."
|
790 |
-
else:
|
791 |
-
return f"No embeddings found for '{name}'."
|
792 |
-
|
793 |
-
def search_by_image(img: np.ndarray) -> str:
|
794 |
-
pl = load_pipeline()
|
795 |
-
if img is None:
|
796 |
-
return "No image uploaded."
|
797 |
-
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
798 |
-
dets = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
799 |
-
if not dets:
|
800 |
-
return "No faces detected in the uploaded image."
|
801 |
-
x1, y1, x2, y2, conf, cls = dets[0]
|
802 |
-
roi = img_bgr[y1:y2, x1:x2]
|
803 |
-
if roi.size == 0:
|
804 |
-
return "Empty face ROI in the uploaded image."
|
805 |
-
|
806 |
-
emb = pl.facenet.get_embedding(roi)
|
807 |
-
if emb is None:
|
808 |
-
return "Could not generate embedding from face."
|
809 |
-
results = pl.db.search_by_image(emb, pl.config.recognition_conf_thres)
|
810 |
-
if not results:
|
811 |
-
return "No matches in the database under current threshold."
|
812 |
-
lines = [f"- {lbl} (sim={sim:.3f})" for lbl, sim in results]
|
813 |
-
return "Search results:\n" + "\n".join(lines)
|
814 |
-
|
815 |
-
def remove_user(label: str) -> str:
|
816 |
-
pl = load_pipeline()
|
817 |
-
if not label:
|
818 |
-
return "No user label selected."
|
819 |
-
pl.db.remove_label(label)
|
820 |
-
pl.db.save()
|
821 |
-
return f"User '{label}' removed."
|
822 |
-
|
823 |
-
def list_users() -> str:
|
824 |
-
pl = load_pipeline()
|
825 |
-
labels = pl.db.list_labels()
|
826 |
-
if labels:
|
827 |
-
return "Enrolled users:\n" + ", ".join(labels)
|
828 |
-
return "No users enrolled."
|
829 |
-
|
830 |
-
def process_test_image(img: np.ndarray) -> Tuple[np.ndarray, str]:
|
831 |
-
"""Single-image test: run pipeline and return annotated image + JSON results."""
|
832 |
-
if img is None:
|
833 |
-
return None, "No image uploaded."
|
834 |
-
|
835 |
-
pl = load_pipeline()
|
836 |
-
bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
837 |
-
processed, detections = pl.process_frame(bgr)
|
838 |
-
result_rgb = cv2.cvtColor(processed, cv2.COLOR_BGR2RGB)
|
839 |
-
return result_rgb, str(detections)
|
840 |
-
|
841 |
-
def build_app():
|
842 |
-
with gr.Blocks() as demo:
|
843 |
-
gr.Markdown("# Complete Face Recognition System (Single-Image) with Mediapipe")
|
844 |
-
|
845 |
-
with gr.Tab("Image Test"):
|
846 |
-
gr.Markdown("Upload a single image to detect faces, run blink detection, face mesh, hand tracking, etc.")
|
847 |
-
test_in = gr.Image(type="numpy", label="Upload Image")
|
848 |
-
test_out = gr.Image()
|
849 |
-
test_info = gr.Textbox(label="Detections")
|
850 |
-
process_btn = gr.Button("Process Image")
|
851 |
-
|
852 |
-
process_btn.click(
|
853 |
-
fn=process_test_image,
|
854 |
-
inputs=test_in,
|
855 |
-
outputs=[test_out, test_info],
|
856 |
-
)
|
857 |
-
|
858 |
-
with gr.Tab("Configuration"):
|
859 |
-
gr.Markdown("Adjust toggles, thresholds, and colors. Click Save to persist changes.")
|
860 |
-
|
861 |
-
with gr.Row():
|
862 |
-
enable_recognition = gr.Checkbox(label="Enable Recognition", value=True)
|
863 |
-
enable_antispoof = gr.Checkbox(label="Enable Anti-Spoof", value=True)
|
864 |
-
enable_blink = gr.Checkbox(label="Enable Blink Detection", value=True)
|
865 |
-
enable_hand = gr.Checkbox(label="Enable Hand Tracking", value=True)
|
866 |
-
enable_eyecolor = gr.Checkbox(label="Enable Eye Color Detection", value=False)
|
867 |
-
enable_facemesh = gr.Checkbox(label="Enable Face Mesh", value=False)
|
868 |
-
|
869 |
-
gr.Markdown("**Face Mesh Options**")
|
870 |
-
with gr.Row():
|
871 |
-
show_tesselation = gr.Checkbox(label="Tesselation", value=False)
|
872 |
-
show_contours = gr.Checkbox(label="Contours", value=False)
|
873 |
-
show_irises = gr.Checkbox(label="Irises", value=False)
|
874 |
-
|
875 |
-
gr.Markdown("**Thresholds**")
|
876 |
-
detection_conf = gr.Slider(0, 1, 0.4, step=0.01, label="Detection Confidence")
|
877 |
-
recognition_thresh = gr.Slider(0.5, 1.0, 0.85, step=0.01, label="Recognition Threshold")
|
878 |
-
antispoof_thresh = gr.Slider(0, 200, 80, step=1, label="Anti-Spoof Threshold")
|
879 |
-
blink_thresh = gr.Slider(0, 0.5, 0.25, step=0.01, label="Blink EAR Threshold")
|
880 |
-
hand_det_conf = gr.Slider(0, 1, 0.5, step=0.01, label="Hand Detection Confidence")
|
881 |
-
hand_track_conf = gr.Slider(0, 1, 0.5, step=0.01, label="Hand Tracking Confidence")
|
882 |
-
|
883 |
-
gr.Markdown("**Color Options (Hex)**")
|
884 |
-
bbox_hex = gr.Textbox(label="Box Color (Recognized)", value="#00ff00")
|
885 |
-
spoofed_hex = gr.Textbox(label="Box Color (Spoofed)", value="#ff0000")
|
886 |
-
unknown_hex = gr.Textbox(label="Box Color (Unknown)", value="#ff0000")
|
887 |
-
eye_hex = gr.Textbox(label="Eye Outline Color", value="#ffff00")
|
888 |
-
blink_hex = gr.Textbox(label="Blink Text Color", value="#0000ff")
|
889 |
-
|
890 |
-
hand_landmark_hex = gr.Textbox(label="Hand Landmark Color", value="#ffd24d")
|
891 |
-
hand_connect_hex = gr.Textbox(label="Hand Connection Color", value="#cc6600")
|
892 |
-
hand_text_hex = gr.Textbox(label="Hand Text Color", value="#ffffff")
|
893 |
-
|
894 |
-
mesh_hex = gr.Textbox(label="Mesh Color", value="#64ff64")
|
895 |
-
contour_hex = gr.Textbox(label="Contour Color", value="#c8c800")
|
896 |
-
iris_hex = gr.Textbox(label="Iris Color", value="#ff00ff")
|
897 |
-
eye_color_text_hex = gr.Textbox(label="Eye Color Text Color", value="#ffffff")
|
898 |
-
|
899 |
-
save_btn = gr.Button("Save Configuration")
|
900 |
-
save_msg = gr.Textbox(label="", interactive=False)
|
901 |
-
|
902 |
-
save_btn.click(
|
903 |
-
fn=update_config,
|
904 |
-
inputs=[
|
905 |
-
enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
|
906 |
-
show_tesselation, show_contours, show_irises,
|
907 |
-
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh, hand_det_conf, hand_track_conf,
|
908 |
-
bbox_hex, spoofed_hex, unknown_hex, eye_hex, blink_hex,
|
909 |
-
hand_landmark_hex, hand_connect_hex, hand_text_hex,
|
910 |
-
mesh_hex, contour_hex, iris_hex, eye_color_text_hex
|
911 |
-
],
|
912 |
-
outputs=[save_msg]
|
913 |
-
)
|
914 |
-
|
915 |
-
with gr.Tab("Database Management"):
|
916 |
-
gr.Markdown("Enroll multiple images per user, search by name or image, remove users, list all users.")
|
917 |
-
|
918 |
-
with gr.Accordion("User Enrollment", open=False):
|
919 |
-
enroll_name = gr.Textbox(label="User Name")
|
920 |
-
enroll_paths = gr.File(file_count="multiple", type="filepath", label="Upload Multiple Images")
|
921 |
-
enroll_btn = gr.Button("Enroll User")
|
922 |
-
enroll_result = gr.Textbox()
|
923 |
-
|
924 |
-
enroll_btn.click(
|
925 |
-
fn=enroll_user,
|
926 |
-
inputs=[enroll_name, enroll_paths],
|
927 |
-
outputs=[enroll_result]
|
928 |
-
)
|
929 |
-
|
930 |
-
with gr.Accordion("User Search", open=False):
|
931 |
-
search_mode = gr.Radio(["Name", "Image"], label="Search By", value="Name")
|
932 |
-
search_name_box = gr.Dropdown(label="Select User", choices=[], value=None, visible=True)
|
933 |
-
search_image_box = gr.Image(label="Upload Search Image", type="numpy", visible=False)
|
934 |
-
search_btn = gr.Button("Search")
|
935 |
-
search_out = gr.Textbox()
|
936 |
-
|
937 |
-
def toggle_search(mode):
|
938 |
-
if mode == "Name":
|
939 |
-
return gr.update(visible=True), gr.update(visible=False)
|
940 |
-
else:
|
941 |
-
return gr.update(visible=False), gr.update(visible=True)
|
942 |
-
|
943 |
-
search_mode.change(
|
944 |
-
fn=toggle_search,
|
945 |
-
inputs=[search_mode],
|
946 |
-
outputs=[search_name_box, search_image_box]
|
947 |
-
)
|
948 |
-
|
949 |
-
def do_search(mode, uname, img):
|
950 |
-
if mode == "Name":
|
951 |
-
return search_by_name(uname)
|
952 |
-
else:
|
953 |
-
return search_by_image(img)
|
954 |
-
|
955 |
-
search_btn.click(
|
956 |
-
fn=do_search,
|
957 |
-
inputs=[search_mode, search_name_box, search_image_box],
|
958 |
-
outputs=[search_out]
|
959 |
-
)
|
960 |
-
|
961 |
-
with gr.Accordion("User Management Tools", open=False):
|
962 |
-
list_btn = gr.Button("List Enrolled Users")
|
963 |
-
list_out = gr.Textbox()
|
964 |
-
list_btn.click(fn=lambda: list_users(), inputs=[], outputs=[list_out])
|
965 |
-
|
966 |
-
def refresh_choices():
|
967 |
-
pl = load_pipeline()
|
968 |
-
return gr.update(choices=pl.db.list_labels())
|
969 |
-
|
970 |
-
refresh_btn = gr.Button("Refresh User List")
|
971 |
-
refresh_btn.click(fn=refresh_choices, inputs=[], outputs=[search_name_box])
|
972 |
-
|
973 |
-
remove_box = gr.Dropdown(label="Select User to Remove", choices=[])
|
974 |
-
remove_btn = gr.Button("Remove")
|
975 |
-
remove_out = gr.Textbox()
|
976 |
-
|
977 |
-
remove_btn.click(fn=remove_user, inputs=[remove_box], outputs=[remove_out])
|
978 |
-
refresh_btn.click(fn=refresh_choices, inputs=[], outputs=[remove_box])
|
979 |
-
|
980 |
-
return demo
|
981 |
-
|
982 |
if __name__ == "__main__":
|
983 |
-
|
984 |
-
|
985 |
-
app.queue().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from face_pipeline import FacePipeline
|
3 |
|
4 |
+
pipeline = FacePipeline()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
if __name__ == "__main__":
|
6 |
+
iface.launch()
|
|
|
|