Update app.py
Browse files
app.py
CHANGED
@@ -15,16 +15,15 @@ from collections import Counter
|
|
15 |
# Gradio
|
16 |
import gradio as gr
|
17 |
|
18 |
-
# YOLO
|
19 |
from ultralytics import YOLO
|
20 |
-
|
21 |
-
# FaceNet
|
22 |
from facenet_pytorch import InceptionResnetV1
|
23 |
from torchvision import transforms
|
24 |
-
|
25 |
-
# DeepSORT tracking
|
26 |
from deep_sort_realtime.deepsort_tracker import DeepSort
|
27 |
|
|
|
|
|
|
|
28 |
# --------------------------------------------------------------------
|
29 |
# LOGGING
|
30 |
# --------------------------------------------------------------------
|
@@ -35,8 +34,9 @@ logging.basicConfig(
|
|
35 |
)
|
36 |
logger = logging.getLogger(__name__)
|
37 |
|
38 |
-
# Mute
|
39 |
logging.getLogger('torch').setLevel(logging.ERROR)
|
|
|
40 |
logging.getLogger('deep_sort_realtime').setLevel(logging.ERROR)
|
41 |
|
42 |
# --------------------------------------------------------------------
|
@@ -47,12 +47,17 @@ DEFAULT_DB_PATH = os.path.expanduser("~/.face_pipeline/known_faces.pkl")
|
|
47 |
MODEL_DIR = os.path.expanduser("~/.face_pipeline/models")
|
48 |
CONFIG_PATH = os.path.expanduser("~/.face_pipeline/config.pkl")
|
49 |
|
50 |
-
#
|
51 |
LEFT_EYE_IDX = [33, 160, 158, 133, 153, 144]
|
52 |
RIGHT_EYE_IDX = [263, 387, 385, 362, 380, 373]
|
53 |
|
|
|
|
|
|
|
|
|
|
|
54 |
# --------------------------------------------------------------------
|
55 |
-
#
|
56 |
# --------------------------------------------------------------------
|
57 |
@dataclass
|
58 |
class PipelineConfig:
|
@@ -65,8 +70,10 @@ class PipelineConfig:
|
|
65 |
hand: Dict = field(default_factory=dict)
|
66 |
eye_color: Dict = field(default_factory=dict)
|
67 |
enabled_components: Dict = field(default_factory=dict)
|
|
|
68 |
detection_conf_thres: float = 0.4
|
69 |
recognition_conf_thres: float = 0.85
|
|
|
70 |
bbox_color: Tuple[int, int, int] = (0, 255, 0)
|
71 |
spoofed_bbox_color: Tuple[int, int, int] = (0, 0, 255)
|
72 |
unknown_bbox_color: Tuple[int, int, int] = (0, 0, 255)
|
@@ -210,19 +217,19 @@ class YOLOFaceDetector:
|
|
210 |
self.device = device
|
211 |
try:
|
212 |
if not os.path.exists(model_path):
|
213 |
-
logger.info(f"Model
|
214 |
-
|
215 |
-
|
216 |
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
217 |
with open(model_path, 'wb') as f:
|
218 |
-
f.write(
|
219 |
logger.info(f"Downloaded YOLO model to {model_path}")
|
220 |
|
221 |
self.model = YOLO(model_path)
|
222 |
self.model.to(device)
|
223 |
logger.info(f"Loaded YOLO model from {model_path}")
|
224 |
except Exception as e:
|
225 |
-
logger.error(f"YOLO
|
226 |
raise
|
227 |
|
228 |
def detect(self, image: np.ndarray, conf_thres: float) -> List[Tuple[int, int, int, int, float, int]]:
|
@@ -240,11 +247,11 @@ class YOLOFaceDetector:
|
|
240 |
logger.debug(f"Detected {len(detections)} faces.")
|
241 |
return detections
|
242 |
except Exception as e:
|
243 |
-
logger.error(f"Detection
|
244 |
return []
|
245 |
|
246 |
# --------------------------------------------------------------------
|
247 |
-
# FACE TRACKER
|
248 |
# --------------------------------------------------------------------
|
249 |
class FaceTracker:
|
250 |
def __init__(self, max_age: int = 30):
|
@@ -260,7 +267,7 @@ class FaceTracker:
|
|
260 |
logger.debug(f"Updated tracker with {len(tracks)} tracks.")
|
261 |
return tracks
|
262 |
except Exception as e:
|
263 |
-
logger.error(f"Tracking
|
264 |
return []
|
265 |
|
266 |
# --------------------------------------------------------------------
|
@@ -283,12 +290,229 @@ class FaceNetEmbedder:
|
|
283 |
tens = self.transform(pil_img).unsqueeze(0).to(self.device)
|
284 |
with torch.no_grad():
|
285 |
embedding = self.model(tens)[0].cpu().numpy()
|
286 |
-
logger.debug(f"Generated embedding: {embedding[:5]}...")
|
287 |
return embedding
|
288 |
except Exception as e:
|
289 |
-
logger.error(f"Embedding
|
290 |
return None
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
# --------------------------------------------------------------------
|
293 |
# FACE PIPELINE
|
294 |
# --------------------------------------------------------------------
|
@@ -299,155 +523,231 @@ class FacePipeline:
|
|
299 |
self.tracker = None
|
300 |
self.facenet = None
|
301 |
self.db = None
|
|
|
302 |
self._initialized = False
|
303 |
|
304 |
def initialize(self):
|
305 |
try:
|
|
|
306 |
self.detector = YOLOFaceDetector(
|
307 |
model_path=self.config.detector['model_path'],
|
308 |
device=self.config.detector['device']
|
309 |
)
|
|
|
310 |
self.tracker = FaceTracker(max_age=self.config.tracker['max_age'])
|
|
|
311 |
self.facenet = FaceNetEmbedder(device=self.config.detector['device'])
|
|
|
312 |
self.db = FaceDatabase()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
self._initialized = True
|
314 |
logger.info("FacePipeline initialized successfully.")
|
315 |
except Exception as e:
|
316 |
-
logger.error(f"
|
317 |
self._initialized = False
|
318 |
raise
|
319 |
|
320 |
def process_frame(self, frame: np.ndarray) -> Tuple[np.ndarray, List[Dict]]:
|
|
|
|
|
|
|
|
|
321 |
if not self._initialized:
|
322 |
-
logger.error("Pipeline not initialized
|
323 |
return frame, []
|
324 |
|
325 |
try:
|
|
|
326 |
detections = self.detector.detect(frame, self.config.detection_conf_thres)
|
327 |
-
|
328 |
-
|
329 |
results = []
|
330 |
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
if not obj.is_confirmed():
|
333 |
continue
|
|
|
334 |
track_id = obj.track_id
|
335 |
-
bbox = obj.to_tlbr()
|
336 |
-
x1, y1, x2, y2 = bbox
|
337 |
conf = getattr(obj, 'score', 1.0)
|
338 |
cls = getattr(obj, 'class_id', 0)
|
339 |
|
340 |
face_roi = frame[y1:y2, x1:x2]
|
341 |
if face_roi.size == 0:
|
342 |
-
logger.warning(f"Empty face ROI for track
|
343 |
continue
|
344 |
|
345 |
-
# Anti-
|
346 |
is_spoofed = False
|
347 |
-
if self.config.anti_spoof
|
348 |
is_spoofed = not self.is_real_face(face_roi)
|
349 |
if is_spoofed:
|
350 |
-
cls = 1
|
351 |
|
352 |
if is_spoofed:
|
353 |
box_color_bgr = self.config.spoofed_bbox_color[::-1]
|
354 |
name = "Spoofed"
|
355 |
similarity = 0.0
|
356 |
else:
|
357 |
-
embedding
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
)
|
362 |
else:
|
363 |
name = "Unknown"
|
364 |
similarity = 0.0
|
365 |
|
366 |
-
box_color_rgb = (
|
367 |
-
|
368 |
-
if name != "Unknown"
|
369 |
-
else self.config.unknown_bbox_color
|
370 |
-
)
|
371 |
box_color_bgr = box_color_rgb[::-1]
|
372 |
|
373 |
-
label_text =
|
374 |
-
cv2.rectangle(
|
375 |
-
cv2.putText(
|
376 |
-
|
377 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color_bgr, 2
|
378 |
-
)
|
379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
detection_info = {
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
|
|
|
|
|
|
|
|
|
|
387 |
}
|
388 |
results.append(detection_info)
|
389 |
|
390 |
-
return
|
391 |
|
392 |
except Exception as e:
|
393 |
-
logger.error(f"Frame
|
394 |
return frame, []
|
395 |
|
396 |
def is_real_face(self, face_roi: np.ndarray) -> bool:
|
397 |
try:
|
398 |
gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY)
|
399 |
-
|
400 |
-
return
|
401 |
except Exception as e:
|
402 |
-
logger.error(f"Anti-spoof
|
403 |
return False
|
404 |
|
405 |
-
def recognize_face(self, embedding: np.ndarray,
|
406 |
try:
|
407 |
-
|
408 |
-
|
409 |
-
for
|
410 |
-
for db_emb in
|
411 |
-
|
412 |
-
if
|
413 |
-
|
414 |
-
|
415 |
-
if
|
416 |
-
|
417 |
-
return
|
418 |
except Exception as e:
|
419 |
-
logger.error(f"
|
420 |
-
return "Unknown", 0.0
|
421 |
|
422 |
@staticmethod
|
423 |
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
|
424 |
-
return float(np.dot(a, b) / (np.linalg.norm(a)
|
425 |
|
426 |
# --------------------------------------------------------------------
|
427 |
-
# GLOBAL
|
428 |
# --------------------------------------------------------------------
|
429 |
pipeline = None
|
430 |
def load_pipeline() -> FacePipeline:
|
431 |
global pipeline
|
432 |
if pipeline is None:
|
433 |
-
logger.info("Loading pipeline for the first time...")
|
434 |
cfg = PipelineConfig.load(CONFIG_PATH)
|
435 |
pipeline = FacePipeline(cfg)
|
436 |
pipeline.initialize()
|
437 |
return pipeline
|
438 |
|
439 |
# --------------------------------------------------------------------
|
440 |
-
#
|
441 |
# --------------------------------------------------------------------
|
442 |
-
def hex_to_bgr(
|
443 |
-
if not
|
444 |
-
|
445 |
-
|
446 |
-
if len(
|
447 |
return (255, 0, 0)
|
448 |
-
r = int(
|
449 |
-
g = int(
|
450 |
-
b = int(
|
451 |
return (b,g,r)
|
452 |
|
453 |
def bgr_to_hex(bgr: Tuple[int,int,int]) -> str:
|
@@ -455,18 +755,18 @@ def bgr_to_hex(bgr: Tuple[int,int,int]) -> str:
|
|
455 |
return f"#{r:02x}{g:02x}{b:02x}"
|
456 |
|
457 |
# --------------------------------------------------------------------
|
458 |
-
#
|
459 |
# --------------------------------------------------------------------
|
460 |
def update_config(
|
|
|
461 |
enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
|
462 |
show_tesselation, show_contours, show_irises,
|
463 |
-
|
464 |
-
hand_det_conf, hand_track_conf,
|
465 |
-
|
466 |
-
eye_hex, blink_hex,
|
467 |
-
hand_landmark_hex,
|
468 |
-
mesh_hex, contour_hex, iris_hex,
|
469 |
-
eye_color_text_hex
|
470 |
):
|
471 |
pl = load_pipeline()
|
472 |
cfg = pl.config
|
@@ -498,7 +798,7 @@ def update_config(
|
|
498 |
cfg.eye_outline_color = hex_to_bgr(eye_hex)[::-1]
|
499 |
cfg.blink_text_color = hex_to_bgr(blink_hex)[::-1]
|
500 |
cfg.hand_landmark_color = hex_to_bgr(hand_landmark_hex)[::-1]
|
501 |
-
cfg.hand_connection_color = hex_to_bgr(
|
502 |
cfg.hand_text_color = hex_to_bgr(hand_text_hex)[::-1]
|
503 |
cfg.mesh_color = hex_to_bgr(mesh_hex)[::-1]
|
504 |
cfg.contour_color = hex_to_bgr(contour_hex)[::-1]
|
@@ -508,87 +808,68 @@ def update_config(
|
|
508 |
cfg.save(CONFIG_PATH)
|
509 |
return "Configuration saved successfully!"
|
510 |
|
511 |
-
|
512 |
-
|
513 |
-
# --------------------------------------------------------------------
|
514 |
-
def enroll_user(name: str, files: List[dict]) -> str:
|
515 |
-
"""
|
516 |
-
Each item in `files` is a dict with keys:
|
517 |
-
- 'name': filename
|
518 |
-
- 'size': file size in bytes
|
519 |
-
- 'data': the binary file contents
|
520 |
-
We decode them into OpenCV images and process.
|
521 |
-
"""
|
522 |
pl = load_pipeline()
|
523 |
-
if not
|
524 |
return "Please provide a user name."
|
525 |
-
if not
|
526 |
return "No images provided."
|
527 |
|
528 |
-
|
529 |
-
for
|
530 |
-
|
531 |
-
|
532 |
-
img_bgr = cv2.
|
533 |
if img_bgr is None:
|
534 |
continue
|
535 |
-
|
536 |
-
|
537 |
-
for x1, y1, x2, y2, conf, cls in
|
538 |
-
|
539 |
-
if
|
540 |
continue
|
541 |
-
emb = pl.facenet.get_embedding(
|
542 |
if emb is not None:
|
543 |
-
pl.db.add_embedding(
|
544 |
-
|
545 |
|
546 |
-
if
|
547 |
pl.db.save()
|
548 |
-
return f"Enrolled {
|
549 |
else:
|
550 |
-
return "No faces
|
551 |
|
552 |
-
# --------------------------------------------------------------------
|
553 |
-
# SEARCH / USER MGMT
|
554 |
-
# --------------------------------------------------------------------
|
555 |
def search_by_name(name: str) -> str:
|
556 |
pl = load_pipeline()
|
557 |
if not name:
|
558 |
-
return "No name
|
559 |
-
|
560 |
-
if
|
561 |
-
return f"
|
562 |
else:
|
563 |
-
return f"No embeddings found for
|
564 |
|
565 |
-
def search_by_image(
|
566 |
pl = load_pipeline()
|
567 |
-
if
|
568 |
return "No image uploaded."
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
detections = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
573 |
-
if not detections:
|
574 |
return "No faces detected in the uploaded image."
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
if face_roi.size == 0:
|
579 |
return "Empty face ROI in the uploaded image."
|
580 |
|
581 |
-
emb = pl.facenet.get_embedding(
|
582 |
if emb is None:
|
583 |
-
return "
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
lines = []
|
590 |
-
for label, sim in search_results:
|
591 |
-
lines.append(f" - {label}, similarity={sim:.3f}")
|
592 |
return "Search results:\n" + "\n".join(lines)
|
593 |
|
594 |
def remove_user(label: str) -> str:
|
@@ -606,75 +887,74 @@ def list_users() -> str:
|
|
606 |
return "Enrolled users:\n" + ", ".join(labels)
|
607 |
return "No users enrolled."
|
608 |
|
609 |
-
# --------------------------------------------------------------------
|
610 |
-
# PROCESS SINGLE IMAGE (IMAGE TEST)
|
611 |
-
# --------------------------------------------------------------------
|
612 |
def process_test_image(img: np.ndarray) -> Tuple[np.ndarray, str]:
|
|
|
613 |
if img is None:
|
614 |
return None, "No image uploaded."
|
|
|
615 |
pl = load_pipeline()
|
616 |
-
|
617 |
-
processed, detections = pl.process_frame(
|
618 |
-
|
619 |
-
return
|
620 |
|
621 |
# --------------------------------------------------------------------
|
622 |
-
# BUILD
|
623 |
# --------------------------------------------------------------------
|
624 |
def build_app():
|
625 |
with gr.Blocks() as demo:
|
626 |
-
gr.Markdown("# Face Recognition System (Image
|
627 |
|
628 |
-
#
|
629 |
with gr.Tab("Image Test"):
|
630 |
-
gr.Markdown("Upload a single image
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
process_btn = gr.Button("Process Image")
|
635 |
|
636 |
process_btn.click(
|
637 |
fn=process_test_image,
|
638 |
-
inputs=
|
639 |
-
outputs=[
|
640 |
)
|
641 |
|
642 |
-
#
|
643 |
with gr.Tab("Configuration"):
|
644 |
-
gr.Markdown("
|
645 |
|
646 |
with gr.Row():
|
647 |
-
enable_recognition = gr.Checkbox(label="Enable
|
648 |
enable_antispoof = gr.Checkbox(label="Enable Anti-Spoof", value=True)
|
649 |
enable_blink = gr.Checkbox(label="Enable Blink Detection", value=True)
|
650 |
enable_hand = gr.Checkbox(label="Enable Hand Tracking", value=True)
|
651 |
enable_eyecolor = gr.Checkbox(label="Enable Eye Color Detection", value=False)
|
652 |
enable_facemesh = gr.Checkbox(label="Enable Face Mesh", value=False)
|
653 |
|
|
|
654 |
gr.Markdown("**Face Mesh Options**")
|
655 |
with gr.Row():
|
656 |
-
show_tesselation = gr.Checkbox(label="
|
657 |
-
show_contours = gr.Checkbox(label="
|
658 |
-
show_irises = gr.Checkbox(label="
|
659 |
|
660 |
gr.Markdown("**Thresholds**")
|
661 |
-
detection_conf = gr.Slider(0
|
662 |
-
recognition_thresh = gr.Slider(0.5, 1.0,
|
663 |
-
antispoof_thresh = gr.Slider(0, 200,
|
664 |
-
blink_thresh = gr.Slider(0, 0.5,
|
665 |
-
hand_det_conf = gr.Slider(0
|
666 |
-
hand_track_conf = gr.Slider(0
|
667 |
|
668 |
gr.Markdown("**Color Options (Hex)**")
|
669 |
bbox_hex = gr.Textbox(label="Box Color (Recognized)", value="#00ff00")
|
670 |
spoofed_hex = gr.Textbox(label="Box Color (Spoofed)", value="#ff0000")
|
671 |
unknown_hex = gr.Textbox(label="Box Color (Unknown)", value="#ff0000")
|
672 |
-
|
673 |
eye_hex = gr.Textbox(label="Eye Outline Color", value="#ffff00")
|
674 |
blink_hex = gr.Textbox(label="Blink Text Color", value="#0000ff")
|
675 |
|
676 |
hand_landmark_hex = gr.Textbox(label="Hand Landmark Color", value="#ffd24d")
|
677 |
-
|
678 |
hand_text_hex = gr.Textbox(label="Hand Text Color", value="#ffffff")
|
679 |
|
680 |
mesh_hex = gr.Textbox(label="Mesh Color", value="#64ff64")
|
@@ -688,84 +968,81 @@ def build_app():
|
|
688 |
save_btn.click(
|
689 |
fn=update_config,
|
690 |
inputs=[
|
691 |
-
enable_recognition, enable_antispoof, enable_blink, enable_hand,
|
692 |
-
enable_eyecolor, enable_facemesh,
|
693 |
show_tesselation, show_contours, show_irises,
|
694 |
-
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh,
|
695 |
-
|
696 |
-
|
697 |
-
eye_hex, blink_hex,
|
698 |
-
hand_landmark_hex, hand_connection_hex, hand_text_hex,
|
699 |
mesh_hex, contour_hex, iris_hex, eye_color_text_hex
|
700 |
],
|
701 |
-
outputs=[save_msg]
|
702 |
)
|
703 |
|
704 |
-
#
|
705 |
with gr.Tab("Database Management"):
|
706 |
-
gr.Markdown("Enroll
|
707 |
|
708 |
with gr.Accordion("User Enrollment", open=False):
|
709 |
-
enroll_name = gr.Textbox(label="
|
710 |
-
|
711 |
-
enroll_files = gr.File(
|
712 |
-
file_count="multiple",
|
713 |
-
type="file",
|
714 |
-
label="Upload Enrollment Images (multiple allowed)"
|
715 |
-
)
|
716 |
enroll_btn = gr.Button("Enroll User")
|
717 |
-
enroll_result = gr.Textbox(
|
718 |
-
|
|
|
|
|
|
|
|
|
|
|
719 |
|
720 |
with gr.Accordion("User Search", open=False):
|
721 |
-
search_mode = gr.Radio(["Name", "Image"],
|
722 |
-
|
723 |
-
|
724 |
search_btn = gr.Button("Search")
|
725 |
-
|
726 |
|
727 |
-
def
|
728 |
if mode == "Name":
|
729 |
return gr.update(visible=True), gr.update(visible=False)
|
730 |
else:
|
731 |
return gr.update(visible=False), gr.update(visible=True)
|
732 |
|
733 |
search_mode.change(
|
734 |
-
fn=
|
735 |
inputs=[search_mode],
|
736 |
-
outputs=[
|
737 |
)
|
738 |
|
739 |
-
def
|
740 |
if mode == "Name":
|
741 |
-
return search_by_name(
|
742 |
else:
|
743 |
return search_by_image(img)
|
744 |
|
745 |
search_btn.click(
|
746 |
-
fn=
|
747 |
-
inputs=[search_mode,
|
748 |
-
outputs=[
|
749 |
)
|
750 |
|
751 |
with gr.Accordion("User Management Tools", open=False):
|
752 |
list_btn = gr.Button("List Enrolled Users")
|
753 |
-
|
754 |
-
list_btn.click(fn=lambda: list_users(), inputs=[], outputs=[
|
755 |
|
756 |
-
def
|
757 |
pl = load_pipeline()
|
758 |
return gr.update(choices=pl.db.list_labels())
|
759 |
|
760 |
-
|
761 |
-
|
762 |
|
763 |
-
|
764 |
-
remove_btn = gr.Button("Remove
|
765 |
-
|
766 |
|
767 |
-
remove_btn.click(fn=remove_user, inputs=[
|
768 |
-
|
769 |
|
770 |
return demo
|
771 |
|
@@ -774,5 +1051,5 @@ def build_app():
|
|
774 |
# --------------------------------------------------------------------
|
775 |
if __name__ == "__main__":
|
776 |
app = build_app()
|
777 |
-
#
|
778 |
app.queue().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
15 |
# Gradio
|
16 |
import gradio as gr
|
17 |
|
18 |
+
# PyTorch, YOLO, FaceNet, and deep_sort
|
19 |
from ultralytics import YOLO
|
|
|
|
|
20 |
from facenet_pytorch import InceptionResnetV1
|
21 |
from torchvision import transforms
|
|
|
|
|
22 |
from deep_sort_realtime.deepsort_tracker import DeepSort
|
23 |
|
24 |
+
# Mediapipe for face mesh, iris detection, blink detection, and hand tracking
|
25 |
+
import mediapipe as mp
|
26 |
+
|
27 |
# --------------------------------------------------------------------
|
28 |
# LOGGING
|
29 |
# --------------------------------------------------------------------
|
|
|
34 |
)
|
35 |
logger = logging.getLogger(__name__)
|
36 |
|
37 |
+
# Mute debug logs from third-party libraries
|
38 |
logging.getLogger('torch').setLevel(logging.ERROR)
|
39 |
+
logging.getLogger('mediapipe').setLevel(logging.ERROR)
|
40 |
logging.getLogger('deep_sort_realtime').setLevel(logging.ERROR)
|
41 |
|
42 |
# --------------------------------------------------------------------
|
|
|
47 |
MODEL_DIR = os.path.expanduser("~/.face_pipeline/models")
|
48 |
CONFIG_PATH = os.path.expanduser("~/.face_pipeline/config.pkl")
|
49 |
|
50 |
+
# Landmark indices for blink detection
|
51 |
LEFT_EYE_IDX = [33, 160, 158, 133, 153, 144]
|
52 |
RIGHT_EYE_IDX = [263, 387, 385, 362, 380, 373]
|
53 |
|
54 |
+
# Mediapipe references
|
55 |
+
mp_drawing = mp.solutions.drawing_utils
|
56 |
+
mp_face_mesh = mp.solutions.face_mesh
|
57 |
+
mp_hands = mp.solutions.hands
|
58 |
+
|
59 |
# --------------------------------------------------------------------
|
60 |
+
# DATACLASS: PipelineConfig
|
61 |
# --------------------------------------------------------------------
|
62 |
@dataclass
|
63 |
class PipelineConfig:
|
|
|
70 |
hand: Dict = field(default_factory=dict)
|
71 |
eye_color: Dict = field(default_factory=dict)
|
72 |
enabled_components: Dict = field(default_factory=dict)
|
73 |
+
|
74 |
detection_conf_thres: float = 0.4
|
75 |
recognition_conf_thres: float = 0.85
|
76 |
+
|
77 |
bbox_color: Tuple[int, int, int] = (0, 255, 0)
|
78 |
spoofed_bbox_color: Tuple[int, int, int] = (0, 0, 255)
|
79 |
unknown_bbox_color: Tuple[int, int, int] = (0, 0, 255)
|
|
|
217 |
self.device = device
|
218 |
try:
|
219 |
if not os.path.exists(model_path):
|
220 |
+
logger.info(f"Model not found at {model_path}. Downloading from GitHub...")
|
221 |
+
resp = requests.get(DEFAULT_MODEL_URL)
|
222 |
+
resp.raise_for_status()
|
223 |
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
224 |
with open(model_path, 'wb') as f:
|
225 |
+
f.write(resp.content)
|
226 |
logger.info(f"Downloaded YOLO model to {model_path}")
|
227 |
|
228 |
self.model = YOLO(model_path)
|
229 |
self.model.to(device)
|
230 |
logger.info(f"Loaded YOLO model from {model_path}")
|
231 |
except Exception as e:
|
232 |
+
logger.error(f"YOLO init failed: {str(e)}")
|
233 |
raise
|
234 |
|
235 |
def detect(self, image: np.ndarray, conf_thres: float) -> List[Tuple[int, int, int, int, float, int]]:
|
|
|
247 |
logger.debug(f"Detected {len(detections)} faces.")
|
248 |
return detections
|
249 |
except Exception as e:
|
250 |
+
logger.error(f"Detection error: {str(e)}")
|
251 |
return []
|
252 |
|
253 |
# --------------------------------------------------------------------
|
254 |
+
# FACE TRACKER (DeepSort)
|
255 |
# --------------------------------------------------------------------
|
256 |
class FaceTracker:
|
257 |
def __init__(self, max_age: int = 30):
|
|
|
267 |
logger.debug(f"Updated tracker with {len(tracks)} tracks.")
|
268 |
return tracks
|
269 |
except Exception as e:
|
270 |
+
logger.error(f"Tracking error: {str(e)}")
|
271 |
return []
|
272 |
|
273 |
# --------------------------------------------------------------------
|
|
|
290 |
tens = self.transform(pil_img).unsqueeze(0).to(self.device)
|
291 |
with torch.no_grad():
|
292 |
embedding = self.model(tens)[0].cpu().numpy()
|
293 |
+
logger.debug(f"Generated embedding sample: {embedding[:5]}...")
|
294 |
return embedding
|
295 |
except Exception as e:
|
296 |
+
logger.error(f"Embedding failed: {str(e)}")
|
297 |
return None
|
298 |
|
299 |
+
# --------------------------------------------------------------------
|
300 |
+
# BLINK DETECTION
|
301 |
+
# --------------------------------------------------------------------
|
302 |
+
def detect_blink(face_roi: np.ndarray, threshold: float = 0.25) -> Tuple[bool, float, float, np.ndarray, np.ndarray]:
|
303 |
+
"""
|
304 |
+
Returns:
|
305 |
+
(blink_bool, left_ear, right_ear, left_eye_points, right_eye_points).
|
306 |
+
"""
|
307 |
+
try:
|
308 |
+
face_mesh_proc = mp_face_mesh.FaceMesh(
|
309 |
+
static_image_mode=True,
|
310 |
+
max_num_faces=1,
|
311 |
+
refine_landmarks=True,
|
312 |
+
min_detection_confidence=0.5
|
313 |
+
)
|
314 |
+
result = face_mesh_proc.process(cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB))
|
315 |
+
face_mesh_proc.close()
|
316 |
+
|
317 |
+
if not result.multi_face_landmarks:
|
318 |
+
return False, 0.0, 0.0, None, None
|
319 |
+
|
320 |
+
landmarks = result.multi_face_landmarks[0].landmark
|
321 |
+
h, w = face_roi.shape[:2]
|
322 |
+
|
323 |
+
def eye_aspect_ratio(indices):
|
324 |
+
pts = [(landmarks[i].x * w, landmarks[i].y * h) for i in indices]
|
325 |
+
vertical = np.linalg.norm(np.array(pts[1]) - np.array(pts[5])) + \
|
326 |
+
np.linalg.norm(np.array(pts[2]) - np.array(pts[4]))
|
327 |
+
horizontal = np.linalg.norm(np.array(pts[0]) - np.array(pts[3]))
|
328 |
+
return vertical / (2.0 * horizontal + 1e-6)
|
329 |
+
|
330 |
+
left_ear = eye_aspect_ratio(LEFT_EYE_IDX)
|
331 |
+
right_ear = eye_aspect_ratio(RIGHT_EYE_IDX)
|
332 |
+
|
333 |
+
blink = (left_ear < threshold) and (right_ear < threshold)
|
334 |
+
|
335 |
+
left_eye_pts = np.array([(int(landmarks[i].x * w), int(landmarks[i].y * h)) for i in LEFT_EYE_IDX])
|
336 |
+
right_eye_pts = np.array([(int(landmarks[i].x * w), int(landmarks[i].y * h)) for i in RIGHT_EYE_IDX])
|
337 |
+
|
338 |
+
return blink, left_ear, right_ear, left_eye_pts, right_eye_pts
|
339 |
+
|
340 |
+
except Exception as e:
|
341 |
+
logger.error(f"Blink detection error: {str(e)}")
|
342 |
+
return False, 0.0, 0.0, None, None
|
343 |
+
|
344 |
+
# --------------------------------------------------------------------
|
345 |
+
# FACE MESH + IRIS DETECTION / DRAWING
|
346 |
+
# --------------------------------------------------------------------
|
347 |
+
def process_face_mesh(face_roi: np.ndarray):
|
348 |
+
try:
|
349 |
+
fm_proc = mp_face_mesh.FaceMesh(
|
350 |
+
static_image_mode=True,
|
351 |
+
max_num_faces=1,
|
352 |
+
refine_landmarks=True,
|
353 |
+
min_detection_confidence=0.5
|
354 |
+
)
|
355 |
+
result = fm_proc.process(cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB))
|
356 |
+
fm_proc.close()
|
357 |
+
if result.multi_face_landmarks:
|
358 |
+
return result.multi_face_landmarks[0]
|
359 |
+
return None
|
360 |
+
except Exception as e:
|
361 |
+
logger.error(f"Face mesh error: {str(e)}")
|
362 |
+
return None
|
363 |
+
|
364 |
+
def draw_face_mesh(image: np.ndarray, face_landmarks, config: Dict, pipeline_config: PipelineConfig):
|
365 |
+
mesh_color_bgr = pipeline_config.mesh_color[::-1]
|
366 |
+
contour_color_bgr = pipeline_config.contour_color[::-1]
|
367 |
+
iris_color_bgr = pipeline_config.iris_color[::-1]
|
368 |
+
|
369 |
+
if config.get('tesselation'):
|
370 |
+
mp_drawing.draw_landmarks(
|
371 |
+
image,
|
372 |
+
face_landmarks,
|
373 |
+
mp_face_mesh.FACEMESH_TESSELATION,
|
374 |
+
landmark_drawing_spec=mp_drawing.DrawingSpec(color=mesh_color_bgr, thickness=1, circle_radius=1),
|
375 |
+
connection_drawing_spec=mp_drawing.DrawingSpec(color=mesh_color_bgr, thickness=1),
|
376 |
+
)
|
377 |
+
if config.get('contours'):
|
378 |
+
mp_drawing.draw_landmarks(
|
379 |
+
image,
|
380 |
+
face_landmarks,
|
381 |
+
mp_face_mesh.FACEMESH_CONTOURS,
|
382 |
+
landmark_drawing_spec=None,
|
383 |
+
connection_drawing_spec=mp_drawing.DrawingSpec(color=contour_color_bgr, thickness=2)
|
384 |
+
)
|
385 |
+
if config.get('irises'):
|
386 |
+
mp_drawing.draw_landmarks(
|
387 |
+
image,
|
388 |
+
face_landmarks,
|
389 |
+
mp_face_mesh.FACEMESH_IRISES,
|
390 |
+
landmark_drawing_spec=None,
|
391 |
+
connection_drawing_spec=mp_drawing.DrawingSpec(color=iris_color_bgr, thickness=2)
|
392 |
+
)
|
393 |
+
|
394 |
+
# --------------------------------------------------------------------
|
395 |
+
# EYE COLOR DETECTION
|
396 |
+
# --------------------------------------------------------------------
|
397 |
+
EYE_COLOR_RANGES = {
|
398 |
+
"amber": (255, 191, 0),
|
399 |
+
"blue": (0, 0, 255),
|
400 |
+
"brown": (139, 69, 19),
|
401 |
+
"green": (0, 128, 0),
|
402 |
+
"gray": (128, 128, 128),
|
403 |
+
"hazel": (102, 51, 0),
|
404 |
+
}
|
405 |
+
|
406 |
+
def classify_eye_color(rgb_color: Tuple[int,int,int]) -> str:
|
407 |
+
if rgb_color is None:
|
408 |
+
return "Unknown"
|
409 |
+
min_dist = float('inf')
|
410 |
+
best = "Unknown"
|
411 |
+
for color_name, ref_rgb in EYE_COLOR_RANGES.items():
|
412 |
+
dist = math.sqrt(sum([(a-b)**2 for a,b in zip(rgb_color, ref_rgb)]))
|
413 |
+
if dist < min_dist:
|
414 |
+
min_dist = dist
|
415 |
+
best = color_name
|
416 |
+
return best
|
417 |
+
|
418 |
+
def get_dominant_color(image_roi, k=3):
|
419 |
+
if image_roi.size == 0:
|
420 |
+
return None
|
421 |
+
pixels = np.float32(image_roi.reshape(-1, 3))
|
422 |
+
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.1)
|
423 |
+
_, labels, palette = cv2.kmeans(pixels, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
|
424 |
+
_, counts = np.unique(labels, return_counts=True)
|
425 |
+
dom_color = tuple(palette[np.argmax(counts)].astype(int).tolist())
|
426 |
+
return dom_color
|
427 |
+
|
428 |
+
def detect_eye_color(face_roi: np.ndarray, face_landmarks) -> Optional[str]:
|
429 |
+
if face_landmarks is None:
|
430 |
+
return None
|
431 |
+
h, w = face_roi.shape[:2]
|
432 |
+
iris_inds = set()
|
433 |
+
for conn in mp_face_mesh.FACEMESH_IRISES:
|
434 |
+
iris_inds.update(conn)
|
435 |
+
|
436 |
+
iris_points = []
|
437 |
+
for idx in iris_inds:
|
438 |
+
lm = face_landmarks.landmark[idx]
|
439 |
+
iris_points.append((int(lm.x * w), int(lm.y * h)))
|
440 |
+
if not iris_points:
|
441 |
+
return None
|
442 |
+
|
443 |
+
min_x = min(pt[0] for pt in iris_points)
|
444 |
+
max_x = max(pt[0] for pt in iris_points)
|
445 |
+
min_y = min(pt[1] for pt in iris_points)
|
446 |
+
max_y = max(pt[1] for pt in iris_points)
|
447 |
+
|
448 |
+
pad = 5
|
449 |
+
x1 = max(0, min_x - pad)
|
450 |
+
y1 = max(0, min_y - pad)
|
451 |
+
x2 = min(w, max_x + pad)
|
452 |
+
y2 = min(h, max_y + pad)
|
453 |
+
|
454 |
+
eye_roi = face_roi[y1:y2, x1:x2]
|
455 |
+
# Resize for more stable KMeans
|
456 |
+
eye_roi_resize = cv2.resize(eye_roi, (40, 40), interpolation=cv2.INTER_AREA)
|
457 |
+
|
458 |
+
if eye_roi_resize.size == 0:
|
459 |
+
return None
|
460 |
+
|
461 |
+
dom_rgb = get_dominant_color(eye_roi_resize)
|
462 |
+
if dom_rgb is not None:
|
463 |
+
return classify_eye_color(dom_rgb)
|
464 |
+
return None
|
465 |
+
|
466 |
+
# --------------------------------------------------------------------
|
467 |
+
# HAND TRACKER
|
468 |
+
# --------------------------------------------------------------------
|
469 |
+
class HandTracker:
|
470 |
+
def __init__(self, min_detection_confidence=0.5, min_tracking_confidence=0.5):
|
471 |
+
self.hands = mp_hands.Hands(
|
472 |
+
static_image_mode=True,
|
473 |
+
max_num_hands=2,
|
474 |
+
min_detection_confidence=min_detection_confidence,
|
475 |
+
min_tracking_confidence=min_tracking_confidence,
|
476 |
+
)
|
477 |
+
logger.info("Initialized Mediapipe HandTracking")
|
478 |
+
|
479 |
+
def detect_hands(self, image: np.ndarray):
|
480 |
+
try:
|
481 |
+
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
482 |
+
results = self.hands.process(img_rgb)
|
483 |
+
return results.multi_hand_landmarks, results.multi_handedness
|
484 |
+
except Exception as e:
|
485 |
+
logger.error(f"Hand detection error: {str(e)}")
|
486 |
+
return None, None
|
487 |
+
|
488 |
+
def draw_hands(self, image: np.ndarray, hand_landmarks, handedness, config):
|
489 |
+
if not hand_landmarks:
|
490 |
+
return image
|
491 |
+
|
492 |
+
mpdraw = mp_drawing
|
493 |
+
for i, hlms in enumerate(hand_landmarks):
|
494 |
+
# Convert user config colors from (R,G,B) to (B,G,R)
|
495 |
+
hl_color = config.hand_landmark_color[::-1]
|
496 |
+
hc_color = config.hand_connection_color[::-1]
|
497 |
+
mpdraw.draw_landmarks(
|
498 |
+
image,
|
499 |
+
hlms,
|
500 |
+
mp_hands.HAND_CONNECTIONS,
|
501 |
+
mpdraw.DrawingSpec(color=hl_color, thickness=2, circle_radius=4),
|
502 |
+
mpdraw.DrawingSpec(color=hc_color, thickness=2, circle_radius=2),
|
503 |
+
)
|
504 |
+
if handedness and i < len(handedness):
|
505 |
+
label = handedness[i].classification[0].label
|
506 |
+
score = handedness[i].classification[0].score
|
507 |
+
text = f"{label}: {score:.2f}"
|
508 |
+
# We'll place text near the wrist
|
509 |
+
wrist_lm = hlms.landmark[mp_hands.HandLandmark.WRIST]
|
510 |
+
h, w, _ = image.shape
|
511 |
+
cx, cy = int(wrist_lm.x * w), int(wrist_lm.y * h)
|
512 |
+
ht_color = config.hand_text_color[::-1]
|
513 |
+
cv2.putText(image, text, (cx, cy - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ht_color, 2)
|
514 |
+
return image
|
515 |
+
|
516 |
# --------------------------------------------------------------------
|
517 |
# FACE PIPELINE
|
518 |
# --------------------------------------------------------------------
|
|
|
523 |
self.tracker = None
|
524 |
self.facenet = None
|
525 |
self.db = None
|
526 |
+
self.hand_tracker = None
|
527 |
self._initialized = False
|
528 |
|
529 |
def initialize(self):
|
530 |
try:
|
531 |
+
# YOLO for face detection
|
532 |
self.detector = YOLOFaceDetector(
|
533 |
model_path=self.config.detector['model_path'],
|
534 |
device=self.config.detector['device']
|
535 |
)
|
536 |
+
# DeepSort tracking
|
537 |
self.tracker = FaceTracker(max_age=self.config.tracker['max_age'])
|
538 |
+
# FaceNet embedder
|
539 |
self.facenet = FaceNetEmbedder(device=self.config.detector['device'])
|
540 |
+
# Database
|
541 |
self.db = FaceDatabase()
|
542 |
+
|
543 |
+
# Hand tracker if enabled
|
544 |
+
if self.config.hand['enable']:
|
545 |
+
self.hand_tracker = HandTracker(
|
546 |
+
min_detection_confidence=self.config.hand['min_detection_confidence'],
|
547 |
+
min_tracking_confidence=self.config.hand['min_tracking_confidence']
|
548 |
+
)
|
549 |
+
|
550 |
self._initialized = True
|
551 |
logger.info("FacePipeline initialized successfully.")
|
552 |
except Exception as e:
|
553 |
+
logger.error(f"Initialization failed: {str(e)}")
|
554 |
self._initialized = False
|
555 |
raise
|
556 |
|
557 |
def process_frame(self, frame: np.ndarray) -> Tuple[np.ndarray, List[Dict]]:
|
558 |
+
"""
|
559 |
+
Main pipeline processing: detection, tracking, hand detection, face mesh, blink detection, etc.
|
560 |
+
Returns annotated_frame, detection_results.
|
561 |
+
"""
|
562 |
if not self._initialized:
|
563 |
+
logger.error("Pipeline not initialized.")
|
564 |
return frame, []
|
565 |
|
566 |
try:
|
567 |
+
# YOLO detection + DeepSort tracking
|
568 |
detections = self.detector.detect(frame, self.config.detection_conf_thres)
|
569 |
+
tracked_objs = self.tracker.update(detections, frame)
|
570 |
+
annotated = frame.copy()
|
571 |
results = []
|
572 |
|
573 |
+
# Hand detection if enabled
|
574 |
+
hand_landmarks_list = None
|
575 |
+
handedness_list = None
|
576 |
+
if self.config.hand['enable'] and self.hand_tracker:
|
577 |
+
hand_landmarks_list, handedness_list = self.hand_tracker.detect_hands(annotated)
|
578 |
+
annotated = self.hand_tracker.draw_hands(
|
579 |
+
annotated, hand_landmarks_list, handedness_list, self.config
|
580 |
+
)
|
581 |
+
|
582 |
+
for obj in tracked_objs:
|
583 |
if not obj.is_confirmed():
|
584 |
continue
|
585 |
+
|
586 |
track_id = obj.track_id
|
587 |
+
bbox = obj.to_tlbr().astype(int)
|
588 |
+
x1, y1, x2, y2 = bbox
|
589 |
conf = getattr(obj, 'score', 1.0)
|
590 |
cls = getattr(obj, 'class_id', 0)
|
591 |
|
592 |
face_roi = frame[y1:y2, x1:x2]
|
593 |
if face_roi.size == 0:
|
594 |
+
logger.warning(f"Empty face ROI for track={track_id}")
|
595 |
continue
|
596 |
|
597 |
+
# Anti-spoofing
|
598 |
is_spoofed = False
|
599 |
+
if self.config.anti_spoof.get('enable', True):
|
600 |
is_spoofed = not self.is_real_face(face_roi)
|
601 |
if is_spoofed:
|
602 |
+
cls = 1 # Mark as spoofed
|
603 |
|
604 |
if is_spoofed:
|
605 |
box_color_bgr = self.config.spoofed_bbox_color[::-1]
|
606 |
name = "Spoofed"
|
607 |
similarity = 0.0
|
608 |
else:
|
609 |
+
# Face embedding + recognition
|
610 |
+
emb = self.facenet.get_embedding(face_roi)
|
611 |
+
if emb is not None and self.config.recognition.get('enable', True):
|
612 |
+
name, similarity = self.recognize_face(emb, self.config.recognition_conf_thres)
|
|
|
613 |
else:
|
614 |
name = "Unknown"
|
615 |
similarity = 0.0
|
616 |
|
617 |
+
box_color_rgb = (self.config.bbox_color if name != "Unknown"
|
618 |
+
else self.config.unknown_bbox_color)
|
|
|
|
|
|
|
619 |
box_color_bgr = box_color_rgb[::-1]
|
620 |
|
621 |
+
label_text = name
|
622 |
+
cv2.rectangle(annotated, (x1, y1), (x2, y2), box_color_bgr, 2)
|
623 |
+
cv2.putText(annotated, label_text, (x1, y1 - 10),
|
624 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color_bgr, 2)
|
|
|
|
|
625 |
|
626 |
+
# Blink detection
|
627 |
+
blink = False
|
628 |
+
if self.config.blink.get('enable', False):
|
629 |
+
blink, left_ear, right_ear, left_eye_pts, right_eye_pts = detect_blink(
|
630 |
+
face_roi, threshold=self.config.blink.get('ear_thresh', 0.25)
|
631 |
+
)
|
632 |
+
if left_eye_pts is not None and right_eye_pts is not None:
|
633 |
+
# Shift points to global coords
|
634 |
+
le_g = left_eye_pts + np.array([x1, y1])
|
635 |
+
re_g = right_eye_pts + np.array([x1, y1])
|
636 |
+
# Outline eyes
|
637 |
+
eye_outline_bgr = self.config.eye_outline_color[::-1]
|
638 |
+
cv2.polylines(annotated, [le_g], True, eye_outline_bgr, 1)
|
639 |
+
cv2.polylines(annotated, [re_g], True, eye_outline_bgr, 1)
|
640 |
+
if blink:
|
641 |
+
blink_msg_color = self.config.blink_text_color[::-1]
|
642 |
+
cv2.putText(annotated, "Blink Detected",
|
643 |
+
(x1, y2 + 20),
|
644 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5,
|
645 |
+
blink_msg_color, 2)
|
646 |
+
|
647 |
+
# Face mesh + eye color
|
648 |
+
face_mesh_landmarks = None
|
649 |
+
eye_color_name = None
|
650 |
+
if (self.config.face_mesh_options.get('enable') or
|
651 |
+
self.config.eye_color.get('enable')):
|
652 |
+
face_mesh_landmarks = process_face_mesh(face_roi)
|
653 |
+
if face_mesh_landmarks:
|
654 |
+
# If user wants to draw face mesh
|
655 |
+
if self.config.face_mesh_options.get('enable', False):
|
656 |
+
draw_face_mesh(
|
657 |
+
annotated[y1:y2, x1:x2],
|
658 |
+
face_mesh_landmarks,
|
659 |
+
self.config.face_mesh_options,
|
660 |
+
self.config
|
661 |
+
)
|
662 |
+
# Eye color
|
663 |
+
if self.config.eye_color.get('enable', False):
|
664 |
+
color_found = detect_eye_color(face_roi, face_mesh_landmarks)
|
665 |
+
if color_found:
|
666 |
+
eye_color_name = color_found
|
667 |
+
text_col_bgr = self.config.eye_color_text_color[::-1]
|
668 |
+
cv2.putText(
|
669 |
+
annotated, f"Eye Color: {eye_color_name}",
|
670 |
+
(x1, y2 + 40),
|
671 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5,
|
672 |
+
text_col_bgr, 2
|
673 |
+
)
|
674 |
+
|
675 |
+
# Record result
|
676 |
detection_info = {
|
677 |
+
"track_id": track_id,
|
678 |
+
"bbox": (x1, y1, x2, y2),
|
679 |
+
"confidence": float(conf),
|
680 |
+
"class_id": cls,
|
681 |
+
"name": name,
|
682 |
+
"similarity": similarity,
|
683 |
+
"blink": blink if self.config.blink.get('enable') else None,
|
684 |
+
"face_mesh": bool(face_mesh_landmarks) if self.config.face_mesh_options.get('enable') else False,
|
685 |
+
"hands_detected": bool(hand_landmarks_list),
|
686 |
+
"hand_count": len(hand_landmarks_list) if hand_landmarks_list else 0,
|
687 |
+
"eye_color": eye_color_name if self.config.eye_color.get('enable') else None
|
688 |
}
|
689 |
results.append(detection_info)
|
690 |
|
691 |
+
return annotated, results
|
692 |
|
693 |
except Exception as e:
|
694 |
+
logger.error(f"Frame process error: {str(e)}")
|
695 |
return frame, []
|
696 |
|
697 |
def is_real_face(self, face_roi: np.ndarray) -> bool:
|
698 |
try:
|
699 |
gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY)
|
700 |
+
lapv = cv2.Laplacian(gray, cv2.CV_64F).var()
|
701 |
+
return lapv > self.config.anti_spoof.get('lap_thresh', 80.0)
|
702 |
except Exception as e:
|
703 |
+
logger.error(f"Anti-spoof error: {str(e)}")
|
704 |
return False
|
705 |
|
706 |
+
def recognize_face(self, embedding: np.ndarray, threshold: float) -> Tuple[str, float]:
|
707 |
try:
|
708 |
+
best_name = "Unknown"
|
709 |
+
best_sim = 0.0
|
710 |
+
for lbl, embs in self.db.embeddings.items():
|
711 |
+
for db_emb in embs:
|
712 |
+
sim = FacePipeline.cosine_similarity(embedding, db_emb)
|
713 |
+
if sim > best_sim:
|
714 |
+
best_sim = sim
|
715 |
+
best_name = lbl
|
716 |
+
if best_sim < threshold:
|
717 |
+
best_name = "Unknown"
|
718 |
+
return best_name, best_sim
|
719 |
except Exception as e:
|
720 |
+
logger.error(f"Recognition error: {str(e)}")
|
721 |
+
return ("Unknown", 0.0)
|
722 |
|
723 |
@staticmethod
|
724 |
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
|
725 |
+
return float(np.dot(a, b) / ((np.linalg.norm(a)*np.linalg.norm(b)) + 1e-6))
|
726 |
|
727 |
# --------------------------------------------------------------------
|
728 |
+
# GLOBAL LOADER
|
729 |
# --------------------------------------------------------------------
|
730 |
pipeline = None
|
731 |
def load_pipeline() -> FacePipeline:
|
732 |
global pipeline
|
733 |
if pipeline is None:
|
|
|
734 |
cfg = PipelineConfig.load(CONFIG_PATH)
|
735 |
pipeline = FacePipeline(cfg)
|
736 |
pipeline.initialize()
|
737 |
return pipeline
|
738 |
|
739 |
# --------------------------------------------------------------------
|
740 |
+
# UTILITY: HEX <-> BGR
|
741 |
# --------------------------------------------------------------------
|
742 |
+
def hex_to_bgr(hexstr: str) -> Tuple[int,int,int]:
|
743 |
+
if not hexstr.startswith('#'):
|
744 |
+
hexstr = '#' + hexstr
|
745 |
+
h = hexstr.lstrip('#')
|
746 |
+
if len(h) != 6:
|
747 |
return (255, 0, 0)
|
748 |
+
r = int(h[0:2], 16)
|
749 |
+
g = int(h[2:4], 16)
|
750 |
+
b = int(h[4:6], 16)
|
751 |
return (b,g,r)
|
752 |
|
753 |
def bgr_to_hex(bgr: Tuple[int,int,int]) -> str:
|
|
|
755 |
return f"#{r:02x}{g:02x}{b:02x}"
|
756 |
|
757 |
# --------------------------------------------------------------------
|
758 |
+
# GRADIO CALLBACKS
|
759 |
# --------------------------------------------------------------------
|
760 |
def update_config(
|
761 |
+
# toggles
|
762 |
enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
|
763 |
show_tesselation, show_contours, show_irises,
|
764 |
+
# thresholds
|
765 |
+
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh, hand_det_conf, hand_track_conf,
|
766 |
+
# colors
|
767 |
+
bbox_hex, spoofed_hex, unknown_hex, eye_hex, blink_hex,
|
768 |
+
hand_landmark_hex, hand_connect_hex, hand_text_hex,
|
769 |
+
mesh_hex, contour_hex, iris_hex, eye_color_text_hex
|
|
|
770 |
):
|
771 |
pl = load_pipeline()
|
772 |
cfg = pl.config
|
|
|
798 |
cfg.eye_outline_color = hex_to_bgr(eye_hex)[::-1]
|
799 |
cfg.blink_text_color = hex_to_bgr(blink_hex)[::-1]
|
800 |
cfg.hand_landmark_color = hex_to_bgr(hand_landmark_hex)[::-1]
|
801 |
+
cfg.hand_connection_color = hex_to_bgr(hand_connect_hex)[::-1]
|
802 |
cfg.hand_text_color = hex_to_bgr(hand_text_hex)[::-1]
|
803 |
cfg.mesh_color = hex_to_bgr(mesh_hex)[::-1]
|
804 |
cfg.contour_color = hex_to_bgr(contour_hex)[::-1]
|
|
|
808 |
cfg.save(CONFIG_PATH)
|
809 |
return "Configuration saved successfully!"
|
810 |
|
811 |
+
def enroll_user(label_name: str, filepaths: List[str]) -> str:
|
812 |
+
"""Enrolls a user by name using multiple image file paths."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
813 |
pl = load_pipeline()
|
814 |
+
if not label_name:
|
815 |
return "Please provide a user name."
|
816 |
+
if not filepaths or len(filepaths) == 0:
|
817 |
return "No images provided."
|
818 |
|
819 |
+
enrolled_count = 0
|
820 |
+
for path in filepaths:
|
821 |
+
if not os.path.isfile(path):
|
822 |
+
continue
|
823 |
+
img_bgr = cv2.imread(path)
|
824 |
if img_bgr is None:
|
825 |
continue
|
826 |
+
# Detect face(s)
|
827 |
+
dets = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
828 |
+
for x1, y1, x2, y2, conf, cls in dets:
|
829 |
+
roi = img_bgr[y1:y2, x1:x2]
|
830 |
+
if roi.size == 0:
|
831 |
continue
|
832 |
+
emb = pl.facenet.get_embedding(roi)
|
833 |
if emb is not None:
|
834 |
+
pl.db.add_embedding(label_name, emb)
|
835 |
+
enrolled_count += 1
|
836 |
|
837 |
+
if enrolled_count > 0:
|
838 |
pl.db.save()
|
839 |
+
return f"Enrolled '{label_name}' with {enrolled_count} face(s)!"
|
840 |
else:
|
841 |
+
return "No faces detected in provided images."
|
842 |
|
|
|
|
|
|
|
843 |
def search_by_name(name: str) -> str:
|
844 |
pl = load_pipeline()
|
845 |
if not name:
|
846 |
+
return "No name entered."
|
847 |
+
embs = pl.db.get_embeddings_by_label(name)
|
848 |
+
if embs:
|
849 |
+
return f"'{name}' found with {len(embs)} embedding(s)."
|
850 |
else:
|
851 |
+
return f"No embeddings found for '{name}'."
|
852 |
|
853 |
+
def search_by_image(img: np.ndarray) -> str:
|
854 |
pl = load_pipeline()
|
855 |
+
if img is None:
|
856 |
return "No image uploaded."
|
857 |
+
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
858 |
+
dets = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
859 |
+
if not dets:
|
|
|
|
|
860 |
return "No faces detected in the uploaded image."
|
861 |
+
x1, y1, x2, y2, conf, cls = dets[0]
|
862 |
+
roi = img_bgr[y1:y2, x1:x2]
|
863 |
+
if roi.size == 0:
|
|
|
864 |
return "Empty face ROI in the uploaded image."
|
865 |
|
866 |
+
emb = pl.facenet.get_embedding(roi)
|
867 |
if emb is None:
|
868 |
+
return "Could not generate embedding from face."
|
869 |
+
results = pl.db.search_by_image(emb, pl.config.recognition_conf_thres)
|
870 |
+
if not results:
|
871 |
+
return "No matches in the database under current threshold."
|
872 |
+
lines = [f"- {lbl} (sim={sim:.3f})" for lbl, sim in results]
|
|
|
|
|
|
|
|
|
873 |
return "Search results:\n" + "\n".join(lines)
|
874 |
|
875 |
def remove_user(label: str) -> str:
|
|
|
887 |
return "Enrolled users:\n" + ", ".join(labels)
|
888 |
return "No users enrolled."
|
889 |
|
|
|
|
|
|
|
890 |
def process_test_image(img: np.ndarray) -> Tuple[np.ndarray, str]:
|
891 |
+
"""Single-image test: run pipeline and return annotated image + JSON results."""
|
892 |
if img is None:
|
893 |
return None, "No image uploaded."
|
894 |
+
|
895 |
pl = load_pipeline()
|
896 |
+
bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
897 |
+
processed, detections = pl.process_frame(bgr)
|
898 |
+
result_rgb = cv2.cvtColor(processed, cv2.COLOR_BGR2RGB)
|
899 |
+
return result_rgb, str(detections)
|
900 |
|
901 |
# --------------------------------------------------------------------
|
902 |
+
# BUILD GRADIO APP
|
903 |
# --------------------------------------------------------------------
|
904 |
def build_app():
|
905 |
with gr.Blocks() as demo:
|
906 |
+
gr.Markdown("# Complete Face Recognition System (Single-Image) with Mediapipe")
|
907 |
|
908 |
+
# Tab: Image Test
|
909 |
with gr.Tab("Image Test"):
|
910 |
+
gr.Markdown("Upload a single image to detect faces, run blink detection, face mesh, hand tracking, etc.")
|
911 |
+
test_in = gr.Image(type="numpy", label="Upload Image")
|
912 |
+
test_out = gr.Image()
|
913 |
+
test_info = gr.Textbox(label="Detections")
|
914 |
process_btn = gr.Button("Process Image")
|
915 |
|
916 |
process_btn.click(
|
917 |
fn=process_test_image,
|
918 |
+
inputs=test_in,
|
919 |
+
outputs=[test_out, test_info],
|
920 |
)
|
921 |
|
922 |
+
# Tab: Configuration
|
923 |
with gr.Tab("Configuration"):
|
924 |
+
gr.Markdown("Adjust toggles, thresholds, and colors. Click Save to persist changes.")
|
925 |
|
926 |
with gr.Row():
|
927 |
+
enable_recognition = gr.Checkbox(label="Enable Recognition", value=True)
|
928 |
enable_antispoof = gr.Checkbox(label="Enable Anti-Spoof", value=True)
|
929 |
enable_blink = gr.Checkbox(label="Enable Blink Detection", value=True)
|
930 |
enable_hand = gr.Checkbox(label="Enable Hand Tracking", value=True)
|
931 |
enable_eyecolor = gr.Checkbox(label="Enable Eye Color Detection", value=False)
|
932 |
enable_facemesh = gr.Checkbox(label="Enable Face Mesh", value=False)
|
933 |
|
934 |
+
# Face Mesh sub-options
|
935 |
gr.Markdown("**Face Mesh Options**")
|
936 |
with gr.Row():
|
937 |
+
show_tesselation = gr.Checkbox(label="Tesselation", value=False)
|
938 |
+
show_contours = gr.Checkbox(label="Contours", value=False)
|
939 |
+
show_irises = gr.Checkbox(label="Irises", value=False)
|
940 |
|
941 |
gr.Markdown("**Thresholds**")
|
942 |
+
detection_conf = gr.Slider(0, 1, 0.4, step=0.01, label="Detection Confidence")
|
943 |
+
recognition_thresh = gr.Slider(0.5, 1.0, 0.85, step=0.01, label="Recognition Threshold")
|
944 |
+
antispoof_thresh = gr.Slider(0, 200, 80, step=1, label="Anti-Spoof Threshold")
|
945 |
+
blink_thresh = gr.Slider(0, 0.5, 0.25, step=0.01, label="Blink EAR Threshold")
|
946 |
+
hand_det_conf = gr.Slider(0, 1, 0.5, step=0.01, label="Hand Detection Confidence")
|
947 |
+
hand_track_conf = gr.Slider(0, 1, 0.5, step=0.01, label="Hand Tracking Confidence")
|
948 |
|
949 |
gr.Markdown("**Color Options (Hex)**")
|
950 |
bbox_hex = gr.Textbox(label="Box Color (Recognized)", value="#00ff00")
|
951 |
spoofed_hex = gr.Textbox(label="Box Color (Spoofed)", value="#ff0000")
|
952 |
unknown_hex = gr.Textbox(label="Box Color (Unknown)", value="#ff0000")
|
|
|
953 |
eye_hex = gr.Textbox(label="Eye Outline Color", value="#ffff00")
|
954 |
blink_hex = gr.Textbox(label="Blink Text Color", value="#0000ff")
|
955 |
|
956 |
hand_landmark_hex = gr.Textbox(label="Hand Landmark Color", value="#ffd24d")
|
957 |
+
hand_connect_hex = gr.Textbox(label="Hand Connection Color", value="#cc6600")
|
958 |
hand_text_hex = gr.Textbox(label="Hand Text Color", value="#ffffff")
|
959 |
|
960 |
mesh_hex = gr.Textbox(label="Mesh Color", value="#64ff64")
|
|
|
968 |
save_btn.click(
|
969 |
fn=update_config,
|
970 |
inputs=[
|
971 |
+
enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
|
|
|
972 |
show_tesselation, show_contours, show_irises,
|
973 |
+
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh, hand_det_conf, hand_track_conf,
|
974 |
+
bbox_hex, spoofed_hex, unknown_hex, eye_hex, blink_hex,
|
975 |
+
hand_landmark_hex, hand_connect_hex, hand_text_hex,
|
|
|
|
|
976 |
mesh_hex, contour_hex, iris_hex, eye_color_text_hex
|
977 |
],
|
978 |
+
outputs=[save_msg]
|
979 |
)
|
980 |
|
981 |
+
# Tab: Database Management
|
982 |
with gr.Tab("Database Management"):
|
983 |
+
gr.Markdown("Enroll multiple images per user, search by name or image, remove users, list all users.")
|
984 |
|
985 |
with gr.Accordion("User Enrollment", open=False):
|
986 |
+
enroll_name = gr.Textbox(label="User Name")
|
987 |
+
enroll_paths = gr.File(file_count="multiple", type="filepath", label="Upload Multiple Images")
|
|
|
|
|
|
|
|
|
|
|
988 |
enroll_btn = gr.Button("Enroll User")
|
989 |
+
enroll_result = gr.Textbox()
|
990 |
+
|
991 |
+
enroll_btn.click(
|
992 |
+
fn=enroll_user,
|
993 |
+
inputs=[enroll_name, enroll_paths],
|
994 |
+
outputs=[enroll_result]
|
995 |
+
)
|
996 |
|
997 |
with gr.Accordion("User Search", open=False):
|
998 |
+
search_mode = gr.Radio(["Name", "Image"], label="Search By", value="Name")
|
999 |
+
search_name_box = gr.Dropdown(label="Select User", choices=[], value=None, visible=True)
|
1000 |
+
search_image_box = gr.Image(label="Upload Search Image", type="numpy", visible=False)
|
1001 |
search_btn = gr.Button("Search")
|
1002 |
+
search_out = gr.Textbox()
|
1003 |
|
1004 |
+
def toggle_search(mode):
|
1005 |
if mode == "Name":
|
1006 |
return gr.update(visible=True), gr.update(visible=False)
|
1007 |
else:
|
1008 |
return gr.update(visible=False), gr.update(visible=True)
|
1009 |
|
1010 |
search_mode.change(
|
1011 |
+
fn=toggle_search,
|
1012 |
inputs=[search_mode],
|
1013 |
+
outputs=[search_name_box, search_image_box]
|
1014 |
)
|
1015 |
|
1016 |
+
def do_search(mode, uname, img):
|
1017 |
if mode == "Name":
|
1018 |
+
return search_by_name(uname)
|
1019 |
else:
|
1020 |
return search_by_image(img)
|
1021 |
|
1022 |
search_btn.click(
|
1023 |
+
fn=do_search,
|
1024 |
+
inputs=[search_mode, search_name_box, search_image_box],
|
1025 |
+
outputs=[search_out]
|
1026 |
)
|
1027 |
|
1028 |
with gr.Accordion("User Management Tools", open=False):
|
1029 |
list_btn = gr.Button("List Enrolled Users")
|
1030 |
+
list_out = gr.Textbox()
|
1031 |
+
list_btn.click(fn=lambda: list_users(), inputs=[], outputs=[list_out])
|
1032 |
|
1033 |
+
def refresh_choices():
|
1034 |
pl = load_pipeline()
|
1035 |
return gr.update(choices=pl.db.list_labels())
|
1036 |
|
1037 |
+
refresh_btn = gr.Button("Refresh User List")
|
1038 |
+
refresh_btn.click(fn=refresh_choices, inputs=[], outputs=[search_name_box])
|
1039 |
|
1040 |
+
remove_box = gr.Dropdown(label="Select User to Remove", choices=[])
|
1041 |
+
remove_btn = gr.Button("Remove")
|
1042 |
+
remove_out = gr.Textbox()
|
1043 |
|
1044 |
+
remove_btn.click(fn=remove_user, inputs=[remove_box], outputs=[remove_out])
|
1045 |
+
refresh_btn.click(fn=refresh_choices, inputs=[], outputs=[remove_box])
|
1046 |
|
1047 |
return demo
|
1048 |
|
|
|
1051 |
# --------------------------------------------------------------------
|
1052 |
if __name__ == "__main__":
|
1053 |
app = build_app()
|
1054 |
+
# queue() is optional if concurrency is expected
|
1055 |
app.queue().launch(server_name="0.0.0.0", server_port=7860)
|