Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Donut Swin Transformer model configuration""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class UnimerNetConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`UnimerNetModel`]. It is used to instantiate a | |
Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Donut | |
[naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 4): | |
The size (resolution) of each patch. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
embed_dim (`int`, *optional*, defaults to 96): | |
Dimensionality of patch embedding. | |
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`): | |
Depth of each layer in the Transformer encoder. | |
num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`): | |
Number of attention heads in each layer of the Transformer encoder. | |
window_size (`int`, *optional*, defaults to 7): | |
Size of windows. | |
mlp_ratio (`float`, *optional*, defaults to 4.0): | |
Ratio of MLP hidden dimensionality to embedding dimensionality. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not a learnable bias should be added to the queries, keys and values. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings and encoder. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
drop_path_rate (`float`, *optional*, defaults to 0.1): | |
Stochastic depth rate. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, | |
`"selu"` and `"gelu_new"` are supported. | |
use_absolute_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether or not to add absolute position embeddings to the patch embeddings. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
Example: | |
```python | |
>>> from transformers import UnimerNetConfig, UnimerNetModel | |
>>> # Initializing a Donut naver-clova-ix/donut-base style configuration | |
>>> configuration = UnimerNetConfig() | |
>>> # Randomly initializing a model from the naver-clova-ix/donut-base style configuration | |
>>> model = UnimerNetModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "donut-swin" | |
attribute_map = { | |
"num_attention_heads": "num_heads", | |
"num_hidden_layers": "num_layers", | |
} | |
def __init__( | |
self, | |
image_size=224, | |
patch_size=4, | |
num_channels=3, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 24], | |
window_size=7, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
drop_path_rate=0.1, | |
hidden_act="gelu", | |
use_absolute_embeddings=False, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.embed_dim = embed_dim | |
self.depths = depths | |
self.num_layers = len(depths) | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.mlp_ratio = mlp_ratio | |
self.qkv_bias = qkv_bias | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.drop_path_rate = drop_path_rate | |
self.hidden_act = hidden_act | |
self.use_absolute_embeddings = use_absolute_embeddings | |
self.layer_norm_eps = layer_norm_eps | |
self.initializer_range = initializer_range | |
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel | |
# this indicates the channel dimension after the last stage of the model | |
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) | |