|
|
|
|
|
from typing import Dict |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from utils.model_util import mean_with_lens, repeat_tensor |
|
|
|
|
|
class CaptionMetaMixin: |
|
pad_idx = 0 |
|
start_idx = 1 |
|
end_idx = 2 |
|
max_length = 20 |
|
|
|
@classmethod |
|
def set_index(cls, start_idx, end_idx, pad_idx): |
|
cls.start_idx = start_idx |
|
cls.end_idx = end_idx |
|
cls.pad_idx = pad_idx |
|
|
|
|
|
class CaptionModel(nn.Module, CaptionMetaMixin): |
|
""" |
|
Encoder-decoder captioning model. |
|
""" |
|
|
|
def __init__(self, encoder: nn.Module, decoder: nn.Module, **kwargs): |
|
super().__init__() |
|
self.encoder = encoder |
|
self.decoder = decoder |
|
self.vocab_size = decoder.vocab_size |
|
self.train_forward_keys = ["cap", "cap_len", "ss_ratio"] |
|
self.inference_forward_keys = ["sample_method", "max_length", "temp"] |
|
freeze_encoder = kwargs.get("freeze_encoder", False) |
|
if freeze_encoder: |
|
for param in self.encoder.parameters(): |
|
param.requires_grad = False |
|
self.check_decoder_compatibility() |
|
|
|
def check_decoder_compatibility(self): |
|
compatible_decoders = [x.__class__.__name__ for x in self.compatible_decoders] |
|
assert isinstance(self.decoder, self.compatible_decoders), \ |
|
f"{self.decoder.__class__.__name__} is incompatible with " \ |
|
f"{self.__class__.__name__}, please use decoder in {compatible_decoders} " |
|
|
|
def forward(self, input_dict: Dict): |
|
""" |
|
input_dict: { |
|
(required) |
|
mode: train/inference, |
|
[spec, spec_len], |
|
[fc], |
|
[attn, attn_len], |
|
[wav, wav_len], |
|
[sample_method: greedy], |
|
[temp: 1.0] (in case of no teacher forcing) |
|
|
|
(optional, mode=train) |
|
cap, |
|
cap_len, |
|
ss_ratio, |
|
|
|
(optional, mode=inference) |
|
sample_method: greedy/beam, |
|
max_length, |
|
temp, |
|
beam_size (optional, sample_method=beam), |
|
n_best (optional, sample_method=beam), |
|
} |
|
""" |
|
encoder_output_dict = self.encoder(input_dict) |
|
output = self.forward_decoder(input_dict, encoder_output_dict) |
|
return output |
|
|
|
def forward_decoder(self, input_dict: Dict, encoder_output_dict: Dict): |
|
if input_dict["mode"] == "train": |
|
forward_dict = { |
|
"mode": "train", "sample_method": "greedy", "temp": 1.0 |
|
} |
|
for key in self.train_forward_keys: |
|
forward_dict[key] = input_dict[key] |
|
forward_dict.update(encoder_output_dict) |
|
output = self.train_forward(forward_dict) |
|
elif input_dict["mode"] == "inference": |
|
forward_dict = {"mode": "inference"} |
|
default_args = { "sample_method": "greedy", "max_length": self.max_length, "temp": 1.0 } |
|
for key in self.inference_forward_keys: |
|
if key in input_dict: |
|
forward_dict[key] = input_dict[key] |
|
else: |
|
forward_dict[key] = default_args[key] |
|
|
|
if forward_dict["sample_method"] == "beam": |
|
forward_dict["beam_size"] = input_dict.get("beam_size", 3) |
|
forward_dict["n_best"] = input_dict.get("n_best", False) |
|
forward_dict["n_best_size"] = input_dict.get("n_best_size", forward_dict["beam_size"]) |
|
elif forward_dict["sample_method"] == "dbs": |
|
forward_dict["beam_size"] = input_dict.get("beam_size", 6) |
|
forward_dict["group_size"] = input_dict.get("group_size", 3) |
|
forward_dict["diversity_lambda"] = input_dict.get("diversity_lambda", 0.5) |
|
forward_dict["group_nbest"] = input_dict.get("group_nbest", True) |
|
|
|
forward_dict.update(encoder_output_dict) |
|
output = self.inference_forward(forward_dict) |
|
else: |
|
raise Exception("mode should be either 'train' or 'inference'") |
|
output.update(encoder_output_dict) |
|
return output |
|
|
|
def prepare_output(self, input_dict): |
|
output = {} |
|
batch_size = input_dict["fc_emb"].size(0) |
|
if input_dict["mode"] == "train": |
|
max_length = input_dict["cap"].size(1) - 1 |
|
elif input_dict["mode"] == "inference": |
|
max_length = input_dict["max_length"] |
|
else: |
|
raise Exception("mode should be either 'train' or 'inference'") |
|
device = input_dict["fc_emb"].device |
|
output["seq"] = torch.full((batch_size, max_length), self.end_idx, |
|
dtype=torch.long) |
|
output["logit"] = torch.empty(batch_size, max_length, |
|
self.vocab_size).to(device) |
|
output["sampled_logprob"] = torch.zeros(batch_size, max_length) |
|
output["embed"] = torch.empty(batch_size, max_length, |
|
self.decoder.d_model).to(device) |
|
return output |
|
|
|
def train_forward(self, input_dict): |
|
if input_dict["ss_ratio"] != 1: |
|
input_dict["mode"] = "train" |
|
return self.stepwise_forward(input_dict) |
|
output = self.seq_forward(input_dict) |
|
self.train_process(output, input_dict) |
|
return output |
|
|
|
def seq_forward(self, input_dict): |
|
raise NotImplementedError |
|
|
|
def train_process(self, output, input_dict): |
|
pass |
|
|
|
def inference_forward(self, input_dict): |
|
if input_dict["sample_method"] == "beam": |
|
return self.beam_search(input_dict) |
|
elif input_dict["sample_method"] == "dbs": |
|
return self.diverse_beam_search(input_dict) |
|
return self.stepwise_forward(input_dict) |
|
|
|
def stepwise_forward(self, input_dict): |
|
"""Step-by-step decoding""" |
|
output = self.prepare_output(input_dict) |
|
max_length = output["seq"].size(1) |
|
|
|
for t in range(max_length): |
|
input_dict["t"] = t |
|
self.decode_step(input_dict, output) |
|
if input_dict["mode"] == "inference": |
|
unfinished_t = output["seq"][:, t] != self.end_idx |
|
if t == 0: |
|
unfinished = unfinished_t |
|
else: |
|
unfinished *= unfinished_t |
|
output["seq"][:, t][~unfinished] = self.end_idx |
|
if unfinished.sum() == 0: |
|
break |
|
self.stepwise_process(output) |
|
return output |
|
|
|
def decode_step(self, input_dict, output): |
|
"""Decoding operation of timestep t""" |
|
decoder_input = self.prepare_decoder_input(input_dict, output) |
|
|
|
output_t = self.decoder(decoder_input) |
|
logit_t = output_t["logit"] |
|
|
|
if logit_t.size(1) == 1: |
|
logit_t = logit_t.squeeze(1) |
|
embed_t = output_t["embed"].squeeze(1) |
|
elif logit_t.size(1) > 1: |
|
logit_t = logit_t[:, -1, :] |
|
embed_t = output_t["embed"][:, -1, :] |
|
else: |
|
raise Exception("no logit output") |
|
|
|
sampled = self.sample_next_word(logit_t, |
|
method=input_dict["sample_method"], |
|
temp=input_dict["temp"]) |
|
|
|
output_t.update(sampled) |
|
output_t["t"] = input_dict["t"] |
|
output_t["logit"] = logit_t |
|
output_t["embed"] = embed_t |
|
self.stepwise_process_step(output, output_t) |
|
|
|
def prepare_decoder_input(self, input_dict, output): |
|
"""Prepare the inp ut dict for the decoder""" |
|
raise NotImplementedError |
|
|
|
def stepwise_process_step(self, output, output_t): |
|
"""Postprocessing (save output values) after each timestep t""" |
|
t = output_t["t"] |
|
output["logit"][:, t, :] = output_t["logit"] |
|
output["seq"][:, t] = output_t["word"] |
|
output["sampled_logprob"][:, t] = output_t["probs"] |
|
output["embed"][:, t, :] = output_t["embed"] |
|
|
|
def stepwise_process(self, output): |
|
"""Postprocessing after the whole step-by-step autoregressive decoding""" |
|
pass |
|
|
|
def sample_next_word(self, logit, method, temp): |
|
"""Sample the next word, given probs output by the decoder""" |
|
logprob = torch.log_softmax(logit, dim=1) |
|
if method == "greedy": |
|
sampled_logprob, word = torch.max(logprob.detach(), 1) |
|
elif method == "gumbel": |
|
def sample_gumbel(shape, eps=1e-20): |
|
U = torch.rand(shape).to(logprob.device) |
|
return -torch.log(-torch.log(U + eps) + eps) |
|
def gumbel_softmax_sample(logit, temperature): |
|
y = logit + sample_gumbel(logit.size()) |
|
return torch.log_softmax(y / temperature, dim=-1) |
|
_logprob = gumbel_softmax_sample(logprob, temp) |
|
_, word = torch.max(_logprob.data, 1) |
|
sampled_logprob = logprob.gather(1, word.unsqueeze(-1)) |
|
else: |
|
logprob = logprob / temp |
|
if method.startswith("top"): |
|
top_num = float(method[3:]) |
|
if 0 < top_num < 1: |
|
probs = torch.softmax(logit, dim=1) |
|
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=1) |
|
_cumsum = sorted_probs.cumsum(1) |
|
mask = _cumsum < top_num |
|
mask = torch.cat([torch.ones_like(mask[:,:1]), mask[:,:-1]], 1) |
|
sorted_probs = sorted_probs * mask.to(sorted_probs) |
|
sorted_probs = sorted_probs / sorted_probs.sum(1, keepdim=True) |
|
logprob.scatter_(1, sorted_indices, sorted_probs.log()) |
|
else: |
|
k = int(top_num) |
|
tmp = torch.empty_like(logprob).fill_(float('-inf')) |
|
topk, indices = torch.topk(logprob, k, dim=1) |
|
tmp = tmp.scatter(1, indices, topk) |
|
logprob = tmp |
|
word = torch.distributions.Categorical(logits=logprob.detach()).sample() |
|
sampled_logprob = logprob.gather(1, word.unsqueeze(-1)).squeeze(1) |
|
word = word.detach().long() |
|
|
|
return {"word": word, "probs": sampled_logprob} |
|
|
|
def beam_search(self, input_dict): |
|
output = self.prepare_output(input_dict) |
|
max_length = input_dict["max_length"] |
|
beam_size = input_dict["beam_size"] |
|
if input_dict["n_best"]: |
|
n_best_size = input_dict["n_best_size"] |
|
batch_size, max_length = output["seq"].size() |
|
output["seq"] = torch.full((batch_size, n_best_size, max_length), |
|
self.end_idx, dtype=torch.long) |
|
|
|
temp = input_dict["temp"] |
|
|
|
for i in range(output["seq"].size(0)): |
|
output_i = self.prepare_beamsearch_output(input_dict) |
|
input_dict["sample_idx"] = i |
|
for t in range(max_length): |
|
input_dict["t"] = t |
|
output_t = self.beamsearch_step(input_dict, output_i) |
|
|
|
|
|
|
|
logit_t = output_t["logit"] |
|
if logit_t.size(1) == 1: |
|
logit_t = logit_t.squeeze(1) |
|
elif logit_t.size(1) > 1: |
|
logit_t = logit_t[:, -1, :] |
|
else: |
|
raise Exception("no logit output") |
|
logprob_t = torch.log_softmax(logit_t, dim=1) |
|
logprob_t = torch.log_softmax(logprob_t / temp, dim=1) |
|
logprob_t = output_i["topk_logprob"].unsqueeze(1) + logprob_t |
|
if t == 0: |
|
topk_logprob, topk_words = logprob_t[0].topk( |
|
beam_size, 0, True, True) |
|
else: |
|
topk_logprob, topk_words = logprob_t.view(-1).topk( |
|
beam_size, 0, True, True) |
|
topk_words = topk_words.cpu() |
|
output_i["topk_logprob"] = topk_logprob |
|
|
|
output_i["prev_words_beam"] = torch.div(topk_words, self.vocab_size, |
|
rounding_mode='trunc') |
|
output_i["next_word"] = topk_words % self.vocab_size |
|
if t == 0: |
|
output_i["seq"] = output_i["next_word"].unsqueeze(1) |
|
else: |
|
output_i["seq"] = torch.cat([ |
|
output_i["seq"][output_i["prev_words_beam"]], |
|
output_i["next_word"].unsqueeze(1)], dim=1) |
|
|
|
|
|
is_end = output_i["next_word"] == self.end_idx |
|
if t == max_length - 1: |
|
is_end.fill_(1) |
|
|
|
for beam_idx in range(beam_size): |
|
if is_end[beam_idx]: |
|
final_beam = { |
|
"seq": output_i["seq"][beam_idx].clone(), |
|
"score": output_i["topk_logprob"][beam_idx].item() |
|
} |
|
final_beam["score"] = final_beam["score"] / (t + 1) |
|
output_i["done_beams"].append(final_beam) |
|
output_i["topk_logprob"][is_end] -= 1000 |
|
|
|
self.beamsearch_process_step(output_i, output_t) |
|
|
|
self.beamsearch_process(output, output_i, input_dict) |
|
return output |
|
|
|
def prepare_beamsearch_output(self, input_dict): |
|
beam_size = input_dict["beam_size"] |
|
device = input_dict["fc_emb"].device |
|
output = { |
|
"topk_logprob": torch.zeros(beam_size).to(device), |
|
"seq": None, |
|
"prev_words_beam": None, |
|
"next_word": None, |
|
"done_beams": [], |
|
} |
|
return output |
|
|
|
def beamsearch_step(self, input_dict, output_i): |
|
decoder_input = self.prepare_beamsearch_decoder_input(input_dict, output_i) |
|
output_t = self.decoder(decoder_input) |
|
output_t["t"] = input_dict["t"] |
|
return output_t |
|
|
|
def prepare_beamsearch_decoder_input(self, input_dict, output_i): |
|
raise NotImplementedError |
|
|
|
def beamsearch_process_step(self, output_i, output_t): |
|
pass |
|
|
|
def beamsearch_process(self, output, output_i, input_dict): |
|
i = input_dict["sample_idx"] |
|
done_beams = sorted(output_i["done_beams"], key=lambda x: -x["score"]) |
|
if input_dict["n_best"]: |
|
done_beams = done_beams[:input_dict["n_best_size"]] |
|
for out_idx, done_beam in enumerate(done_beams): |
|
seq = done_beam["seq"] |
|
output["seq"][i][out_idx, :len(seq)] = seq |
|
else: |
|
seq = done_beams[0]["seq"] |
|
output["seq"][i][:len(seq)] = seq |
|
|
|
def diverse_beam_search(self, input_dict): |
|
|
|
def add_diversity(seq_table, logprob, t, divm, diversity_lambda, bdash): |
|
local_time = t - divm |
|
unaug_logprob = logprob.clone() |
|
|
|
if divm > 0: |
|
change = torch.zeros(logprob.size(-1)) |
|
for prev_choice in range(divm): |
|
prev_decisions = seq_table[prev_choice][..., local_time] |
|
for prev_labels in range(bdash): |
|
change.scatter_add_(0, prev_decisions[prev_labels], change.new_ones(1)) |
|
|
|
change = change.to(logprob.device) |
|
logprob = logprob - repeat_tensor(change, bdash) * diversity_lambda |
|
|
|
return logprob, unaug_logprob |
|
|
|
output = self.prepare_output(input_dict) |
|
group_size = input_dict["group_size"] |
|
batch_size = output["seq"].size(0) |
|
beam_size = input_dict["beam_size"] |
|
bdash = beam_size // group_size |
|
input_dict["bdash"] = bdash |
|
diversity_lambda = input_dict["diversity_lambda"] |
|
device = input_dict["fc_emb"].device |
|
max_length = input_dict["max_length"] |
|
temp = input_dict["temp"] |
|
group_nbest = input_dict["group_nbest"] |
|
batch_size, max_length = output["seq"].size() |
|
if group_nbest: |
|
output["seq"] = torch.full((batch_size, beam_size, max_length), |
|
self.end_idx, dtype=torch.long) |
|
else: |
|
output["seq"] = torch.full((batch_size, group_size, max_length), |
|
self.end_idx, dtype=torch.long) |
|
|
|
|
|
for i in range(batch_size): |
|
input_dict["sample_idx"] = i |
|
seq_table = [torch.LongTensor(bdash, 0) for _ in range(group_size)] |
|
logprob_table = [torch.zeros(bdash).to(device) for _ in range(group_size)] |
|
done_beams_table = [[] for _ in range(group_size)] |
|
|
|
output_i = { |
|
"prev_words_beam": [None for _ in range(group_size)], |
|
"next_word": [None for _ in range(group_size)], |
|
"state": [None for _ in range(group_size)] |
|
} |
|
|
|
for t in range(max_length + group_size - 1): |
|
input_dict["t"] = t |
|
for divm in range(group_size): |
|
input_dict["divm"] = divm |
|
if t >= divm and t <= max_length + divm - 1: |
|
local_time = t - divm |
|
decoder_input = self.prepare_dbs_decoder_input(input_dict, output_i) |
|
output_t = self.decoder(decoder_input) |
|
output_t["divm"] = divm |
|
logit_t = output_t["logit"] |
|
if logit_t.size(1) == 1: |
|
logit_t = logit_t.squeeze(1) |
|
elif logit_t.size(1) > 1: |
|
logit_t = logit_t[:, -1, :] |
|
else: |
|
raise Exception("no logit output") |
|
logprob_t = torch.log_softmax(logit_t, dim=1) |
|
logprob_t = torch.log_softmax(logprob_t / temp, dim=1) |
|
logprob_t, unaug_logprob_t = add_diversity(seq_table, logprob_t, t, divm, diversity_lambda, bdash) |
|
logprob_t = logprob_table[divm].unsqueeze(-1) + logprob_t |
|
if local_time == 0: |
|
topk_logprob, topk_words = logprob_t[0].topk( |
|
bdash, 0, True, True) |
|
else: |
|
topk_logprob, topk_words = logprob_t.view(-1).topk( |
|
bdash, 0, True, True) |
|
topk_words = topk_words.cpu() |
|
logprob_table[divm] = topk_logprob |
|
output_i["prev_words_beam"][divm] = topk_words // self.vocab_size |
|
output_i["next_word"][divm] = topk_words % self.vocab_size |
|
if local_time > 0: |
|
seq_table[divm] = seq_table[divm][output_i["prev_words_beam"][divm]] |
|
seq_table[divm] = torch.cat([ |
|
seq_table[divm], |
|
output_i["next_word"][divm].unsqueeze(-1)], -1) |
|
|
|
is_end = seq_table[divm][:, t-divm] == self.end_idx |
|
assert seq_table[divm].shape[-1] == t - divm + 1 |
|
if t == max_length + divm - 1: |
|
is_end.fill_(1) |
|
for beam_idx in range(bdash): |
|
if is_end[beam_idx]: |
|
final_beam = { |
|
"seq": seq_table[divm][beam_idx].clone(), |
|
"score": logprob_table[divm][beam_idx].item() |
|
} |
|
final_beam["score"] = final_beam["score"] / (t - divm + 1) |
|
done_beams_table[divm].append(final_beam) |
|
logprob_table[divm][is_end] -= 1000 |
|
self.dbs_process_step(output_i, output_t) |
|
done_beams_table = [sorted(done_beams_table[divm], key=lambda x: -x["score"])[:bdash] for divm in range(group_size)] |
|
if group_nbest: |
|
done_beams = sum(done_beams_table, []) |
|
else: |
|
done_beams = [group_beam[0] for group_beam in done_beams_table] |
|
for _, done_beam in enumerate(done_beams): |
|
output["seq"][i, _, :len(done_beam["seq"])] = done_beam["seq"] |
|
|
|
return output |
|
|
|
def prepare_dbs_decoder_input(self, input_dict, output_i): |
|
raise NotImplementedError |
|
|
|
def dbs_process_step(self, output_i, output_t): |
|
pass |
|
|
|
|
|
class CaptionSequenceModel(nn.Module, CaptionMetaMixin): |
|
|
|
def __init__(self, model, seq_output_size): |
|
super().__init__() |
|
self.model = model |
|
if model.decoder.d_model != seq_output_size: |
|
self.output_transform = nn.Linear(model.decoder.d_model, seq_output_size) |
|
else: |
|
self.output_transform = lambda x: x |
|
|
|
def forward(self, input_dict): |
|
output = self.model(input_dict) |
|
|
|
if input_dict["mode"] == "train": |
|
lens = input_dict["cap_len"] - 1 |
|
|
|
elif input_dict["mode"] == "inference": |
|
if "sample_method" in input_dict and input_dict["sample_method"] == "beam": |
|
return output |
|
seq = output["seq"] |
|
lens = torch.where(seq == self.model.end_idx, torch.zeros_like(seq), torch.ones_like(seq)).sum(dim=1) |
|
else: |
|
raise Exception("mode should be either 'train' or 'inference'") |
|
seq_output = mean_with_lens(output["embed"], lens) |
|
seq_output = self.output_transform(seq_output) |
|
output["seq_output"] = seq_output |
|
return output |
|
|
|
|