File size: 9,030 Bytes
6065472 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
from typing import Dict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import repeat
from models.base import CaptionMetaMixin
from utils.model_util import init
class WmlEncoderKdWrapper(nn.Module, CaptionMetaMixin):
def __init__(self,
model: nn.Module,
shared_dim: int,
tchr_layer_to_dims: Dict[str, int],
loss_type: str = "mse",):
super().__init__()
self.model = model
self.tchr_layers = list(tchr_layer_to_dims.keys())
self.stdnt_qv_proj = nn.Linear(model.encoder.fc_emb_size,
2 * shared_dim)
self.stdnt_qv_proj.apply(init)
for layer, dim in tchr_layer_to_dims.items():
self.add_module(f'tchr_kv_proj_{layer}', nn.Linear(dim, 2 * shared_dim))
getattr(self, f'tchr_kv_proj_{layer}').apply(init)
if loss_type == "mse":
self.loss_fn = nn.MSELoss(reduction="none")
def forward(self, input_dict: Dict):
output_dict = self.model(input_dict)
if "tchr_output" in input_dict:
stdnt_emb = output_dict["fc_emb"]
stdnt_qv = self.stdnt_qv_proj(stdnt_emb)
stdnt_q, stdnt_v = torch.chunk(stdnt_qv, 2, dim=-1)
tchr_output = input_dict["tchr_output"]
layer_ks, layer_vs = [], []
for layer in self.tchr_layers:
layer_kv = getattr(self, f'tchr_kv_proj_{layer}')(tchr_output[layer])
layer_k, layer_v = torch.chunk(layer_kv, 2, dim=-1)
layer_ks.append(layer_k)
layer_vs.append(layer_v)
layer_ks = torch.stack(layer_ks, dim=1)
layer_vs = torch.stack(layer_vs, dim=1)
weights = torch.softmax(stdnt_q.unsqueeze(1) @ layer_ks.transpose(1, 2), dim=-1)
stdnt_v = repeat(stdnt_v, 'b d -> b n d', n=len(self.tchr_layers))
loss = self.loss_fn(stdnt_v, layer_vs).mean(dim=-1, keepdim=True)
loss = (weights @ loss).mean()
output_dict["enc_kd_loss"] = loss
return output_dict
class MseEncoderKdWrapper(nn.Module, CaptionMetaMixin):
def __init__(self,
model: nn.Module,
shared_dim: int,
tchr_dim: int,
use_tchr_proj: bool = True,
l2_norm: bool = False,
):
super().__init__()
self.model = model
self.use_tchr_proj = use_tchr_proj
if not use_tchr_proj:
assert shared_dim == tchr_dim
self.tchr_dim = tchr_dim
self.l2_norm = l2_norm
if hasattr(model, "encoder"):
self.stdnt_proj = nn.Linear(model.encoder.fc_emb_size,
shared_dim)
else:
self.stdnt_proj = nn.Linear(model.fc_emb_size,
shared_dim)
self.stdnt_proj.apply(init)
if use_tchr_proj:
self.tchr_proj = nn.Linear(tchr_dim, shared_dim)
self.tchr_proj.apply(init)
else:
self.tchr_proj = nn.Identity()
def forward(self, input_dict: Dict):
unsup = input_dict.get("unsup", False)
if unsup is False:
if self.use_tchr_proj:
output_dict = self.model(input_dict)
stdnt_emb = output_dict["fc_emb"]
else:
encoder_output = self.model.encoder(input_dict)
stdnt_emb = encoder_output["fc_emb"]
encoder_output["fc_emb"] = self.stdnt_proj(encoder_output["fc_emb"])
encoder_output["attn_emb"] = self.stdnt_proj(encoder_output["attn_emb"])
output_dict = self.model.forward_decoder(input_dict, encoder_output)
else:
output_dict = self.model.encoder(input_dict)
stdnt_emb = output_dict["fc_emb"]
if "tchr_output" in input_dict:
stdnt_emb = self.stdnt_proj(stdnt_emb)
tchr_emb = input_dict["tchr_output"]["embedding"]
thcr_emb = self.tchr_proj(tchr_emb)
if self.l2_norm:
stdnt_emb = F.normalize(stdnt_emb, dim=-1)
thcr_emb = F.normalize(thcr_emb, dim=-1)
loss = F.mse_loss(stdnt_emb, thcr_emb)
output_dict["enc_kd_loss"] = loss
return output_dict
class ContraEncoderKdWrapper(nn.Module, CaptionMetaMixin):
def __init__(self,
model: nn.Module,
shared_dim: int,
tchr_dim: int,
):
super().__init__()
self.model = model
self.tchr_dim = tchr_dim
if hasattr(model, "encoder"):
self.stdnt_proj = nn.Linear(model.encoder.fc_emb_size,
shared_dim)
else:
self.stdnt_proj = nn.Linear(model.fc_emb_size,
shared_dim)
self.stdnt_proj.apply(init)
self.tchr_proj = nn.Linear(tchr_dim, shared_dim)
self.tchr_proj.apply(init)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
def forward(self, input_dict: Dict):
unsup = input_dict.get("unsup", False)
if unsup is False:
output_dict = self.model(input_dict)
else:
output_dict = self.model.encoder(input_dict)
if "tchr_output" in input_dict:
stdnt_emb = output_dict["fc_emb"]
stdnt_emb = self.stdnt_proj(stdnt_emb)
tchr_emb = input_dict["tchr_output"]["embedding"]
thcr_emb = self.tchr_proj(tchr_emb)
stdnt_emb = F.normalize(stdnt_emb, dim=-1)
thcr_emb = F.normalize(thcr_emb, dim=-1)
unscaled_logit = stdnt_emb @ thcr_emb.transpose(0, 1)
logit = self.logit_scale * unscaled_logit
label = torch.arange(logit.shape[0]).to(logit.device)
loss1 = F.cross_entropy(logit, label)
loss2 = F.cross_entropy(logit.transpose(0, 1), label)
loss = (loss1 + loss2) / 2
output_dict["enc_kd_loss"] = loss
return output_dict
class ContraMseEncoderKdWrapper(nn.Module, CaptionMetaMixin):
def __init__(self,
model: nn.Module,
shared_dim: int,
tchr_dim: int,
use_tchr_proj: bool = True,
l2_norm: bool = False,
):
super().__init__()
self.model = model
self.use_tchr_proj = use_tchr_proj
if not use_tchr_proj:
assert shared_dim == tchr_dim
self.tchr_dim = tchr_dim
self.l2_norm = l2_norm
if hasattr(model, "encoder"):
self.stdnt_proj = nn.Linear(model.encoder.fc_emb_size,
shared_dim)
else:
self.stdnt_proj = nn.Linear(model.fc_emb_size,
shared_dim)
self.stdnt_proj.apply(init)
if use_tchr_proj:
self.tchr_proj = nn.Linear(tchr_dim, shared_dim)
self.tchr_proj.apply(init)
else:
self.tchr_proj = nn.Identity()
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
def forward(self, input_dict: Dict):
unsup = input_dict.get("unsup", False)
if unsup is False:
if self.use_tchr_proj:
output_dict = self.model(input_dict)
stdnt_emb = output_dict["fc_emb"]
else:
encoder_output = self.model.encoder(input_dict)
stdnt_emb = encoder_output["fc_emb"]
encoder_output["fc_emb"] = self.stdnt_proj(encoder_output["fc_emb"])
encoder_output["attn_emb"] = self.stdnt_proj(encoder_output["attn_emb"])
output_dict = self.model.forward_decoder(input_dict, encoder_output)
else:
output_dict = self.model.encoder(input_dict)
stdnt_emb = output_dict["fc_emb"]
if "tchr_output" in input_dict:
stdnt_emb = self.stdnt_proj(stdnt_emb)
tchr_emb = input_dict["tchr_output"]["embedding"]
thcr_emb = self.tchr_proj(tchr_emb)
if self.l2_norm:
stdnt_emb = F.normalize(stdnt_emb, dim=-1)
thcr_emb = F.normalize(thcr_emb, dim=-1)
mse_loss = F.mse_loss(stdnt_emb, thcr_emb)
stdnt_emb = F.normalize(stdnt_emb, dim=-1)
thcr_emb = F.normalize(thcr_emb, dim=-1)
unscaled_logit = stdnt_emb @ thcr_emb.transpose(0, 1)
logit = self.logit_scale * unscaled_logit
label = torch.arange(logit.shape[0]).to(logit.device)
loss1 = F.cross_entropy(logit, label)
loss2 = F.cross_entropy(logit.transpose(0, 1), label)
cntr_loss = (loss1 + loss2) / 2
output_dict["enc_kd_loss"] = mse_loss + cntr_loss
return output_dict
|