File size: 15,219 Bytes
6065472 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import os
import torch
import torch.nn as nn
from tqdm import tqdm
from efficientnet_pytorch import EfficientNet
from efficientnet_pytorch.model import MBConvBlock
from efficientnet_pytorch import utils as efficientnet_utils
from efficientnet_pytorch.utils import (
round_filters,
round_repeats,
get_same_padding_conv2d,
calculate_output_image_size,
MemoryEfficientSwish,
)
from einops import rearrange, reduce
from torch.hub import load_state_dict_from_url
model_dir = "./"
class _EffiNet(nn.Module):
"""A proxy for efficient net models"""
def __init__(self,
blocks_args=None,
global_params=None,
prune_start_layer: int = 0,
prune_se: bool = True,
prune_ratio: float = 0.0
) -> None:
super().__init__()
if prune_ratio > 0:
self.eff_net = EfficientNetB2Pruned(blocks_args=blocks_args,
global_params=global_params,
prune_start_layer=prune_start_layer,
prune_se=prune_se,
prune_ratio=prune_ratio)
else:
self.eff_net = EfficientNet(blocks_args=blocks_args,
global_params=global_params)
def forward(self, x: torch.Tensor):
x = rearrange(x, 'b f t -> b 1 f t')
x = self.eff_net.extract_features(x)
return reduce(x, 'b c f t -> b t c', 'mean')
def get_model(pretrained=True) -> _EffiNet:
blocks_args, global_params = efficientnet_utils.get_model_params(
'efficientnet-b2', {'include_top': False})
model = _EffiNet(blocks_args=blocks_args,
global_params=global_params)
model.eff_net._change_in_channels(1)
if pretrained:
model_path = os.path.join(model_dir, "effb2.pt")
if not os.path.exists(model_path):
state_dict = load_state_dict_from_url(
'https://github.com/richermans/HEAR2021_EfficientLatent/releases/download/v0.0.1/effb2.pt',
progress=True,
model_dir=model_dir)
else:
state_dict = torch.load(model_path)
del_keys = [key for key in state_dict if key.startswith("front_end")]
for key in del_keys:
del state_dict[key]
model.eff_net.load_state_dict(state_dict)
return model
class MBConvBlockPruned(MBConvBlock):
def __init__(self, block_args, global_params, image_size=None, prune_ratio=0.5, prune_se=True):
super(MBConvBlock, self).__init__()
self._block_args = block_args
self._bn_mom = 1 - global_params.batch_norm_momentum # pytorch's difference from tensorflow
self._bn_eps = global_params.batch_norm_epsilon
self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
self.id_skip = block_args.id_skip # whether to use skip connection and drop connect
# Expansion phase (Inverted Bottleneck)
inp = self._block_args.input_filters # number of input channels
oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels
if self._block_args.expand_ratio != 1:
oup = int(oup * (1 - prune_ratio))
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size
# Depthwise convolution phase
k = self._block_args.kernel_size
s = self._block_args.stride
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._depthwise_conv = Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
image_size = calculate_output_image_size(image_size, s)
# Squeeze and Excitation layer, if desired
if self.has_se:
Conv2d = get_same_padding_conv2d(image_size=(1, 1))
num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
if prune_se:
num_squeezed_channels = int(num_squeezed_channels * (1 - prune_ratio))
self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Pointwise convolution phase
final_oup = self._block_args.output_filters
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
self._swish = MemoryEfficientSwish()
class EfficientNetB2Pruned(EfficientNet):
def __init__(self, blocks_args=None, global_params=None,
prune_start_layer=0, prune_ratio=0.5, prune_se=True):
super(EfficientNet, self).__init__()
assert isinstance(blocks_args, list), 'blocks_args should be a list'
assert len(blocks_args) > 0, 'block args must be greater than 0'
self._global_params = global_params
self._blocks_args = blocks_args
# Batch norm parameters
bn_mom = 1 - self._global_params.batch_norm_momentum
bn_eps = self._global_params.batch_norm_epsilon
# Get stem static or dynamic convolution depending on image size
image_size = global_params.image_size
Conv2d = get_same_padding_conv2d(image_size=image_size)
n_build_blks = 0
# Stem
in_channels = 1 # spectrogram
p = 0.0 if n_build_blks < prune_start_layer else prune_ratio
out_channels = round_filters(32 * (1 - p),
self._global_params) # number of output channels
self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
image_size = calculate_output_image_size(image_size, 2)
n_build_blks += 1
# Build blocks
self._blocks = nn.ModuleList([])
for block_args in self._blocks_args:
p = 0.0 if n_build_blks < prune_start_layer else prune_ratio
orig_input_filters = block_args.input_filters
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(
block_args.input_filters * (1 - p),
self._global_params),
output_filters=round_filters(
block_args.output_filters * (1 - p),
self._global_params),
num_repeat=round_repeats(block_args.num_repeat, self._global_params)
)
if n_build_blks == prune_start_layer:
block_args = block_args._replace(input_filters=round_filters(
orig_input_filters,
self._global_params)
)
# The first block needs to take care of stride and filter size increase.
self._blocks.append(MBConvBlockPruned(block_args, self._global_params,
image_size=image_size, prune_ratio=p,
prune_se=prune_se))
n_build_blks += 1
image_size = calculate_output_image_size(image_size, block_args.stride)
if block_args.num_repeat > 1: # modify block_args to keep same output size
block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
for _ in range(block_args.num_repeat - 1):
self._blocks.append(MBConvBlockPruned(block_args,
self._global_params,
image_size=image_size,
prune_ratio=p,
prune_se=prune_se))
# image_size = calculate_output_image_size(image_size, block_args.stride) # stride = 1
# Head
in_channels = block_args.output_filters # output of final block
p = 0.0 if n_build_blks < prune_start_layer else prune_ratio
out_channels = round_filters(1280 * (1 - p), self._global_params)
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
# Final linear layer
self._avg_pooling = nn.AdaptiveAvgPool2d(1)
if self._global_params.include_top:
self._dropout = nn.Dropout(self._global_params.dropout_rate)
self._fc = nn.Linear(out_channels, self._global_params.num_classes)
# set activation to memory efficient swish by default
self._swish = MemoryEfficientSwish()
def get_pruned_model(pretrained: bool = True,
prune_ratio: float = 0.5,
prune_start_layer: int = 0,
prune_se: bool = True,
prune_method: str = "operator_norm") -> _EffiNet:
import captioning.models.conv_filter_pruning as pruning_lib
blocks_args, global_params = efficientnet_utils.get_model_params(
'efficientnet-b2', {'include_top': False})
# print("num blocks: ", len(blocks_args))
# print("block args: ")
# for block_arg in blocks_args:
# print(block_arg)
model = _EffiNet(blocks_args=blocks_args,
global_params=global_params,
prune_start_layer=prune_start_layer,
prune_se=prune_se,
prune_ratio=prune_ratio)
if prune_method == "operator_norm":
filter_pruning = pruning_lib.operator_norm_pruning
elif prune_method == "interspeech":
filter_pruning = pruning_lib.cs_interspeech
elif prune_method == "iclr_l1":
filter_pruning = pruning_lib.iclr_l1
elif prune_method == "iclr_gm":
filter_pruning = pruning_lib.iclr_gm
elif prune_method == "cs_waspaa":
filter_pruning = pruning_lib.cs_waspaa
if isinstance(pretrained, str):
ckpt = torch.load(pretrained, "cpu")
state_dict = {}
for key in ckpt["model"].keys():
if key.startswith("model.encoder.backbone"):
state_dict[key[len("model.encoder.backbone.eff_net."):]] = ckpt["model"][key]
elif isinstance(pretrained, bool):
model_path = os.path.join(model_dir, "effb2.pt")
if not os.path.exists(model_path):
state_dict = load_state_dict_from_url(
'https://github.com/richermans/HEAR2021_EfficientLatent/releases/download/v0.0.1/effb2.pt',
progress=True,
model_dir=model_dir)
else:
state_dict = torch.load(model_path)
del_keys = [key for key in state_dict if key.startswith("front_end")]
for key in del_keys:
del state_dict[key]
# load pretrained model with corresponding filters
# rule:
# * depthwise_conv: in_ch_idx = out_ch_idx = prev_conv_idx
mod_dep_path = [
"_conv_stem",
]
conv_to_bn = {"_conv_stem": "_bn0"}
for i in range(2):
mod_dep_path.extend([
f"_blocks.{i}._depthwise_conv",
f"_blocks.{i}._se_reduce",
f"_blocks.{i}._se_expand",
f"_blocks.{i}._project_conv",
])
conv_to_bn[f"_blocks.{i}._depthwise_conv"] = f"_blocks.{i}._bn1"
conv_to_bn[f"_blocks.{i}._project_conv"] = f"_blocks.{i}._bn2"
for i in range(2, 23):
mod_dep_path.extend([
f"_blocks.{i}._expand_conv",
f"_blocks.{i}._depthwise_conv",
f"_blocks.{i}._se_reduce",
f"_blocks.{i}._se_expand",
f"_blocks.{i}._project_conv"
])
conv_to_bn[f"_blocks.{i}._expand_conv"] = f"_blocks.{i}._bn0"
conv_to_bn[f"_blocks.{i}._depthwise_conv"] = f"_blocks.{i}._bn1"
conv_to_bn[f"_blocks.{i}._project_conv"] = f"_blocks.{i}._bn2"
mod_dep_path.append("_conv_head")
conv_to_bn["_conv_head"] = "_bn1"
# print(mod_dep_path)
# print(conv_to_bn)
key_to_w_b_idx = {}
model_dict = model.eff_net.state_dict()
for conv_key in tqdm(mod_dep_path):
weight = state_dict[f"{conv_key}.weight"]
ptr_n_filter = weight.size(0)
model_n_filter = model_dict[f"{conv_key}.weight"].size(0)
if model_n_filter < ptr_n_filter:
key_to_w_b_idx[conv_key] = filter_pruning(weight.numpy())[:model_n_filter]
else:
key_to_w_b_idx[conv_key] = slice(None)
pruned_state_dict = {}
for conv_key, prev_conv_key in zip(mod_dep_path, [None] + mod_dep_path[:-1]):
for sub_key in ["weight", "bias"]: # adjust the conv layer
cur_key = f"{conv_key}.{sub_key}"
if cur_key not in state_dict:
continue
if prev_conv_key is None or conv_key.endswith("_depthwise_conv"):
conv_in_idx = slice(None)
else:
conv_in_idx = key_to_w_b_idx[prev_conv_key]
# the first pruned layer
if model_dict[cur_key].ndim > 1 and model_dict[cur_key].size(1) == state_dict[cur_key].size(1):
conv_in_idx = slice(None)
if conv_key.endswith("_depthwise_conv"):
conv_out_idx = key_to_w_b_idx[prev_conv_key]
else:
conv_out_idx = key_to_w_b_idx[conv_key]
# if conv_key == "_blocks.16._se_reduce":
# print(len(conv_out_idx), len(conv_in_idx))
if sub_key == "weight":
pruned_state_dict[cur_key] = state_dict[cur_key][
conv_out_idx, ...][:, conv_in_idx, ...]
else:
pruned_state_dict[cur_key] = state_dict[cur_key][
conv_out_idx, ...]
if conv_key in conv_to_bn: # adjust the corresponding bn layer
for sub_key in ["weight", "bias", "running_mean", "running_var"]:
cur_key = f"{conv_to_bn[conv_key]}.{sub_key}"
if cur_key not in state_dict:
continue
pruned_state_dict[cur_key] = state_dict[cur_key][
key_to_w_b_idx[conv_key], ...]
model.eff_net.load_state_dict(pruned_state_dict)
return model
|