File size: 24,432 Bytes
bd6c4af 0216866 bd6c4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
"""
This script is a gradio web ui.
The script takes an image and an audio clip, and lets you configure all the
variables such as cfg_scale, pose_weight, face_weight, lip_weight, etc.
Usage:
This script can be run from the command line with the following command:
python scripts/app.py
"""
import gradio as gr
import argparse
import copy
import logging
import math
import os
import random
import time
import warnings
from datetime import datetime
from typing import List, Tuple
import diffusers
import mlflow
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
from omegaconf import OmegaConf
from torch import nn
from tqdm.auto import tqdm
import uuid
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from joyhallo.animate.face_animate import FaceAnimatePipeline
from joyhallo.datasets.audio_processor import AudioProcessor
from joyhallo.datasets.image_processor import ImageProcessor
from joyhallo.datasets.talk_video import TalkingVideoDataset
from joyhallo.models.audio_proj import AudioProjModel
from joyhallo.models.face_locator import FaceLocator
from joyhallo.models.image_proj import ImageProjModel
from joyhallo.models.mutual_self_attention import ReferenceAttentionControl
from joyhallo.models.unet_2d_condition import UNet2DConditionModel
from joyhallo.models.unet_3d import UNet3DConditionModel
from joyhallo.utils.util import (compute_snr, delete_additional_ckpt,
import_filename, init_output_dir,
load_checkpoint, save_checkpoint,
seed_everything, tensor_to_video)
warnings.filterwarnings("ignore")
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__, log_level="INFO")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Net(nn.Module):
"""
The Net class defines a neural network model that combines a reference UNet2DConditionModel,
a denoising UNet3DConditionModel, a face locator, and other components to animate a face in a static image.
Args:
reference_unet (UNet2DConditionModel): The reference UNet2DConditionModel used for face animation.
denoising_unet (UNet3DConditionModel): The denoising UNet3DConditionModel used for face animation.
face_locator (FaceLocator): The face locator model used for face animation.
reference_control_writer: The reference control writer component.
reference_control_reader: The reference control reader component.
imageproj: The image projection model.
audioproj: The audio projection model.
Forward method:
noisy_latents (torch.Tensor): The noisy latents tensor.
timesteps (torch.Tensor): The timesteps tensor.
ref_image_latents (torch.Tensor): The reference image latents tensor.
face_emb (torch.Tensor): The face embeddings tensor.
audio_emb (torch.Tensor): The audio embeddings tensor.
mask (torch.Tensor): Hard face mask for face locator.
full_mask (torch.Tensor): Pose Mask.
face_mask (torch.Tensor): Face Mask
lip_mask (torch.Tensor): Lip Mask
uncond_img_fwd (bool): A flag indicating whether to perform reference image unconditional forward pass.
uncond_audio_fwd (bool): A flag indicating whether to perform audio unconditional forward pass.
Returns:
torch.Tensor: The output tensor of the neural network model.
"""
def __init__(
self,
reference_unet: UNet2DConditionModel,
denoising_unet: UNet3DConditionModel,
face_locator: FaceLocator,
reference_control_writer,
reference_control_reader,
imageproj,
audioproj,
):
super().__init__()
self.reference_unet = reference_unet
self.denoising_unet = denoising_unet
self.face_locator = face_locator
self.reference_control_writer = reference_control_writer
self.reference_control_reader = reference_control_reader
self.imageproj = imageproj
self.audioproj = audioproj
def forward(
self,
noisy_latents: torch.Tensor,
timesteps: torch.Tensor,
ref_image_latents: torch.Tensor,
face_emb: torch.Tensor,
audio_emb: torch.Tensor,
mask: torch.Tensor,
full_mask: torch.Tensor,
face_mask: torch.Tensor,
lip_mask: torch.Tensor,
uncond_img_fwd: bool = False,
uncond_audio_fwd: bool = False,
):
"""
simple docstring to prevent pylint error
"""
face_emb = self.imageproj(face_emb)
mask = mask.to(device=device)
mask_feature = self.face_locator(mask)
audio_emb = audio_emb.to(
device=self.audioproj.device, dtype=self.audioproj.dtype)
audio_emb = self.audioproj(audio_emb)
# condition forward
if not uncond_img_fwd:
ref_timesteps = torch.zeros_like(timesteps)
ref_timesteps = repeat(
ref_timesteps,
"b -> (repeat b)",
repeat=ref_image_latents.size(0) // ref_timesteps.size(0),
)
self.reference_unet(
ref_image_latents,
ref_timesteps,
encoder_hidden_states=face_emb,
return_dict=False,
)
self.reference_control_reader.update(self.reference_control_writer)
if uncond_audio_fwd:
audio_emb = torch.zeros_like(audio_emb).to(
device=audio_emb.device, dtype=audio_emb.dtype
)
model_pred = self.denoising_unet(
noisy_latents,
timesteps,
mask_cond_fea=mask_feature,
encoder_hidden_states=face_emb,
audio_embedding=audio_emb,
full_mask=full_mask,
face_mask=face_mask,
lip_mask=lip_mask
).sample
return model_pred
def get_attention_mask(mask: torch.Tensor, weight_dtype: torch.dtype) -> torch.Tensor:
"""
Rearrange the mask tensors to the required format.
Args:
mask (torch.Tensor): The input mask tensor.
weight_dtype (torch.dtype): The data type for the mask tensor.
Returns:
torch.Tensor: The rearranged mask tensor.
"""
if isinstance(mask, List):
_mask = []
for m in mask:
_mask.append(
rearrange(m, "b f 1 h w -> (b f) (h w)").to(weight_dtype))
return _mask
mask = rearrange(mask, "b f 1 h w -> (b f) (h w)").to(weight_dtype)
return mask
def get_noise_scheduler(cfg: argparse.Namespace) -> Tuple[DDIMScheduler, DDIMScheduler]:
"""
Create noise scheduler for training.
Args:
cfg (argparse.Namespace): Configuration object.
Returns:
Tuple[DDIMScheduler, DDIMScheduler]: Train noise scheduler and validation noise scheduler.
"""
sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs)
if cfg.enable_zero_snr:
sched_kwargs.update(
rescale_betas_zero_snr=True,
timestep_spacing="trailing",
prediction_type="v_prediction",
)
val_noise_scheduler = DDIMScheduler(**sched_kwargs)
sched_kwargs.update({"beta_schedule": "scaled_linear"})
train_noise_scheduler = DDIMScheduler(**sched_kwargs)
return train_noise_scheduler, val_noise_scheduler
def process_audio_emb(audio_emb: torch.Tensor) -> torch.Tensor:
"""
Process the audio embedding to concatenate with other tensors.
Parameters:
audio_emb (torch.Tensor): The audio embedding tensor to process.
Returns:
concatenated_tensors (List[torch.Tensor]): The concatenated tensor list.
"""
concatenated_tensors = []
for i in range(audio_emb.shape[0]):
vectors_to_concat = [
audio_emb[max(min(i + j, audio_emb.shape[0] - 1), 0)]for j in range(-2, 3)]
concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0))
audio_emb = torch.stack(concatenated_tensors, dim=0)
return audio_emb
def log_validation(
accelerator: Accelerator,
vae: AutoencoderKL,
net: Net,
scheduler: DDIMScheduler,
width: int,
height: int,
clip_length: int = 24,
generator: torch.Generator = None,
cfg: dict = None,
save_dir: str = None,
global_step: int = 0,
times: int = None,
face_analysis_model_path: str = "",
) -> None:
"""
Log validation video during the training process.
Args:
accelerator (Accelerator): The accelerator for distributed training.
vae (AutoencoderKL): The autoencoder model.
net (Net): The main neural network model.
scheduler (DDIMScheduler): The scheduler for noise.
width (int): The width of the input images.
height (int): The height of the input images.
clip_length (int): The length of the video clips. Defaults to 24.
generator (torch.Generator): The random number generator. Defaults to None.
cfg (dict): The configuration dictionary. Defaults to None.
save_dir (str): The directory to save validation results. Defaults to None.
global_step (int): The current global step in training. Defaults to 0.
times (int): The number of inference times. Defaults to None.
face_analysis_model_path (str): The path to the face analysis model. Defaults to "".
Returns:
torch.Tensor: The tensor result of the validation.
"""
ori_net = accelerator.unwrap_model(net)
reference_unet = ori_net.reference_unet
denoising_unet = ori_net.denoising_unet
face_locator = ori_net.face_locator
imageproj = ori_net.imageproj
audioproj = ori_net.audioproj
tmp_denoising_unet = copy.deepcopy(denoising_unet)
pipeline = FaceAnimatePipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=tmp_denoising_unet,
face_locator=face_locator,
image_proj=imageproj,
scheduler=scheduler,
)
pipeline = pipeline.to(device)
image_processor = ImageProcessor((width, height), face_analysis_model_path)
audio_processor = AudioProcessor(
cfg.data.sample_rate,
cfg.data.fps,
cfg.wav2vec_config.model_path,
cfg.wav2vec_config.features == "last",
os.path.dirname(cfg.audio_separator.model_path),
os.path.basename(cfg.audio_separator.model_path),
os.path.join(save_dir, '.cache', "audio_preprocess"),
device=device,
)
return cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length
def inference(cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length):
ref_img_path = cfg.ref_img_path
audio_path = cfg.audio_path
source_image_pixels, \
source_image_face_region, \
source_image_face_emb, \
source_image_full_mask, \
source_image_face_mask, \
source_image_lip_mask = image_processor.preprocess(
ref_img_path, os.path.join(save_dir, '.cache'), cfg.face_expand_ratio)
audio_emb, audio_length = audio_processor.preprocess(
audio_path, clip_length)
audio_emb = process_audio_emb(audio_emb)
source_image_pixels = source_image_pixels.unsqueeze(0)
source_image_face_region = source_image_face_region.unsqueeze(0)
source_image_face_emb = source_image_face_emb.reshape(1, -1)
source_image_face_emb = torch.tensor(source_image_face_emb)
source_image_full_mask = [
(mask.repeat(clip_length, 1))
for mask in source_image_full_mask
]
source_image_face_mask = [
(mask.repeat(clip_length, 1))
for mask in source_image_face_mask
]
source_image_lip_mask = [
(mask.repeat(clip_length, 1))
for mask in source_image_lip_mask
]
times = audio_emb.shape[0] // clip_length
tensor_result = []
# generator = torch.manual_seed(42)
generator = torch.cuda.manual_seed_all(42) # use cuda seed all
for t in range(times):
print(f"[{t+1}/{times}]")
if len(tensor_result) == 0:
# The first iteration
motion_zeros = source_image_pixels.repeat(
cfg.data.n_motion_frames, 1, 1, 1)
motion_zeros = motion_zeros.to(
dtype=source_image_pixels.dtype, device=source_image_pixels.device)
pixel_values_ref_img = torch.cat(
[source_image_pixels, motion_zeros], dim=0) # concat the ref image and the first motion frames
else:
motion_frames = tensor_result[-1][0]
motion_frames = motion_frames.permute(1, 0, 2, 3)
motion_frames = motion_frames[0 - cfg.data.n_motion_frames:]
motion_frames = motion_frames * 2.0 - 1.0
motion_frames = motion_frames.to(
dtype=source_image_pixels.dtype, device=source_image_pixels.device)
pixel_values_ref_img = torch.cat(
[source_image_pixels, motion_frames], dim=0) # concat the ref image and the motion frames
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)
audio_tensor = audio_emb[
t * clip_length: min((t + 1) * clip_length, audio_emb.shape[0])
]
audio_tensor = audio_tensor.unsqueeze(0)
audio_tensor = audio_tensor.to(
device=audioproj.device, dtype=audioproj.dtype)
audio_tensor = audioproj(audio_tensor)
pipeline_output = pipeline(
ref_image=pixel_values_ref_img,
audio_tensor=audio_tensor,
face_emb=source_image_face_emb,
face_mask=source_image_face_region,
pixel_values_full_mask=source_image_full_mask,
pixel_values_face_mask=source_image_face_mask,
pixel_values_lip_mask=source_image_lip_mask,
width=cfg.data.train_width,
height=cfg.data.train_height,
video_length=clip_length,
num_inference_steps=cfg.inference_steps,
guidance_scale=cfg.cfg_scale,
generator=generator,
)
tensor_result.append(pipeline_output.videos)
tensor_result = torch.cat(tensor_result, dim=2)
tensor_result = tensor_result.squeeze(0)
tensor_result = tensor_result[:, :audio_length]
output_file = cfg.output
tensor_to_video(tensor_result, output_file, audio_path)
return output_file
def get_model(cfg: argparse.Namespace) -> None:
"""
Trains the model using the given configuration (cfg).
Args:
cfg (dict): The configuration dictionary containing the parameters for training.
Notes:
- This function trains the model using the given configuration.
- It initializes the necessary components for training, such as the pipeline, optimizer, and scheduler.
- The training progress is logged and tracked using the accelerator.
- The trained model is saved after the training is completed.
"""
kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
accelerator = Accelerator(
gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps,
mixed_precision=cfg.solver.mixed_precision,
log_with="mlflow",
project_dir="./mlruns",
kwargs_handlers=[kwargs],
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if cfg.seed is not None:
seed_everything(cfg.seed)
# create output dir for training
exp_name = cfg.exp_name
save_dir = f"{cfg.output_dir}/{exp_name}"
validation_dir = save_dir
if accelerator.is_main_process:
init_output_dir([save_dir])
accelerator.wait_for_everyone()
if cfg.weight_dtype == "fp16":
weight_dtype = torch.float16
elif cfg.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
elif cfg.weight_dtype == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(
f"Do not support weight dtype: {cfg.weight_dtype} during training"
)
if not torch.cuda.is_available():
weight_dtype = torch.float32
# Create Models
vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to(
device=device, dtype=weight_dtype
)
reference_unet = UNet2DConditionModel.from_pretrained(
cfg.base_model_path,
subfolder="unet",
).to(device=device, dtype=weight_dtype)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
cfg.base_model_path,
cfg.mm_path,
subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(
cfg.unet_additional_kwargs),
use_landmark=False
).to(device=device, dtype=weight_dtype)
imageproj = ImageProjModel(
cross_attention_dim=denoising_unet.config.cross_attention_dim,
clip_embeddings_dim=512,
clip_extra_context_tokens=4,
).to(device=device, dtype=weight_dtype)
face_locator = FaceLocator(
conditioning_embedding_channels=320,
).to(device=device, dtype=weight_dtype)
audioproj = AudioProjModel(
seq_len=5,
blocks=12,
channels=768,
intermediate_dim=512,
output_dim=768,
context_tokens=32,
).to(device=device, dtype=weight_dtype)
# Freeze
vae.requires_grad_(False)
imageproj.requires_grad_(False)
reference_unet.requires_grad_(False)
denoising_unet.requires_grad_(False)
face_locator.requires_grad_(False)
audioproj.requires_grad_(True)
# Set motion module learnable
trainable_modules = cfg.trainable_para
for name, module in denoising_unet.named_modules():
if any(trainable_mod in name for trainable_mod in trainable_modules):
for params in module.parameters():
params.requires_grad_(True)
reference_control_writer = ReferenceAttentionControl(
reference_unet,
do_classifier_free_guidance=False,
mode="write",
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
denoising_unet,
do_classifier_free_guidance=False,
mode="read",
fusion_blocks="full",
)
net = Net(
reference_unet,
denoising_unet,
face_locator,
reference_control_writer,
reference_control_reader,
imageproj,
audioproj,
).to(dtype=weight_dtype)
m,u = net.load_state_dict(
torch.load(
cfg.audio_ckpt_dir,
map_location="cpu",
),
)
assert len(m) == 0 and len(u) == 0, "Fail to load correct checkpoint."
print("loaded weight from ", os.path.join(cfg.audio_ckpt_dir))
# get noise scheduler
_, val_noise_scheduler = get_noise_scheduler(cfg)
if cfg.solver.enable_xformers_memory_efficient_attention and torch.cuda.is_available():
if is_xformers_available():
reference_unet.enable_xformers_memory_efficient_attention()
denoising_unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
if cfg.solver.gradient_checkpointing:
reference_unet.enable_gradient_checkpointing()
denoising_unet.enable_gradient_checkpointing()
if cfg.solver.scale_lr:
learning_rate = (
cfg.solver.learning_rate
* cfg.solver.gradient_accumulation_steps
* cfg.data.train_bs
* accelerator.num_processes
)
else:
learning_rate = cfg.solver.learning_rate
# Initialize the optimizer
optimizer_cls = torch.optim.AdamW
trainable_params = list(
filter(lambda p: p.requires_grad, net.parameters()))
optimizer = optimizer_cls(
trainable_params,
lr=learning_rate,
betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
weight_decay=cfg.solver.adam_weight_decay,
eps=cfg.solver.adam_epsilon,
)
# Scheduler
lr_scheduler = get_scheduler(
cfg.solver.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.solver.lr_warmup_steps
* cfg.solver.gradient_accumulation_steps,
num_training_steps=cfg.solver.max_train_steps
* cfg.solver.gradient_accumulation_steps,
)
# get data loader
train_dataset = TalkingVideoDataset(
img_size=(cfg.data.train_width, cfg.data.train_height),
sample_rate=cfg.data.sample_rate,
n_sample_frames=cfg.data.n_sample_frames,
n_motion_frames=cfg.data.n_motion_frames,
audio_margin=cfg.data.audio_margin,
data_meta_paths=cfg.data.train_meta_paths,
wav2vec_cfg=cfg.wav2vec_config,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=16
)
# Prepare everything with our `accelerator`.
(
net,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
net,
optimizer,
train_dataloader,
lr_scheduler,
)
return accelerator, vae, net, val_noise_scheduler, cfg, validation_dir
def load_config(config_path: str) -> dict:
"""
Loads the configuration file.
Args:
config_path (str): Path to the configuration file.
Returns:
dict: The configuration dictionary.
"""
if config_path.endswith(".yaml"):
return OmegaConf.load(config_path)
if config_path.endswith(".py"):
return import_filename(config_path).cfg
raise ValueError("Unsupported format for config file")
args = argparse.Namespace()
_config = load_config('configs/inference/inference.yaml')
for key, value in _config.items():
setattr(args, key, value)
accelerator, vae, net, val_noise_scheduler, cfg, validation_dir = get_model(args)
cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length = log_validation(
accelerator=accelerator,
vae=vae,
net=net,
scheduler=val_noise_scheduler,
width=cfg.data.train_width,
height=cfg.data.train_height,
clip_length=cfg.data.n_sample_frames,
cfg=cfg,
save_dir=validation_dir,
global_step=0,
times=cfg.single_inference_times if cfg.single_inference_times is not None else None,
face_analysis_model_path=cfg.face_analysis_model_path
)
def predict(image, audio, pose_weight, face_weight, lip_weight, face_expand_ratio, progress=gr.Progress(track_tqdm=True)):
"""
Create a gradio interface with the configs.
"""
_ = progress
unique_id = uuid.uuid4()
config = {
'ref_img_path': image,
'audio_path': audio,
'pose_weight': pose_weight,
'face_weight': face_weight,
'lip_weight': lip_weight,
'face_expand_ratio': face_expand_ratio,
'config': 'configs/inference/inference.yaml',
'checkpoint': None,
'output': f'output-{unique_id}.mp4'
}
global cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length
for key, value in config.items():
setattr(cfg, key, value)
return inference(cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length) |