File size: 24,432 Bytes
bd6c4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0216866
 
bd6c4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
"""
This script is a gradio web ui.

The script takes an image and an audio clip, and lets you configure all the
variables such as cfg_scale, pose_weight, face_weight, lip_weight, etc.

Usage:
This script can be run from the command line with the following command:

python scripts/app.py
"""

import gradio as gr
import argparse
import copy
import logging
import math
import os
import random
import time
import warnings
from datetime import datetime
from typing import List, Tuple

import diffusers
import mlflow
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
from omegaconf import OmegaConf
from torch import nn
from tqdm.auto import tqdm
import uuid

import sys
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))

from joyhallo.animate.face_animate import FaceAnimatePipeline
from joyhallo.datasets.audio_processor import AudioProcessor
from joyhallo.datasets.image_processor import ImageProcessor
from joyhallo.datasets.talk_video import TalkingVideoDataset
from joyhallo.models.audio_proj import AudioProjModel
from joyhallo.models.face_locator import FaceLocator
from joyhallo.models.image_proj import ImageProjModel
from joyhallo.models.mutual_self_attention import ReferenceAttentionControl
from joyhallo.models.unet_2d_condition import UNet2DConditionModel
from joyhallo.models.unet_3d import UNet3DConditionModel
from joyhallo.utils.util import (compute_snr, delete_additional_ckpt,
                              import_filename, init_output_dir,
                              load_checkpoint, save_checkpoint,
                              seed_everything, tensor_to_video)

warnings.filterwarnings("ignore")

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")

logger = get_logger(__name__, log_level="INFO")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class Net(nn.Module):
    """
    The Net class defines a neural network model that combines a reference UNet2DConditionModel,
    a denoising UNet3DConditionModel, a face locator, and other components to animate a face in a static image.

    Args:
        reference_unet (UNet2DConditionModel): The reference UNet2DConditionModel used for face animation.
        denoising_unet (UNet3DConditionModel): The denoising UNet3DConditionModel used for face animation.
        face_locator (FaceLocator): The face locator model used for face animation.
        reference_control_writer: The reference control writer component.
        reference_control_reader: The reference control reader component.
        imageproj: The image projection model.
        audioproj: The audio projection model.

    Forward method:
        noisy_latents (torch.Tensor): The noisy latents tensor.
        timesteps (torch.Tensor): The timesteps tensor.
        ref_image_latents (torch.Tensor): The reference image latents tensor.
        face_emb (torch.Tensor): The face embeddings tensor.
        audio_emb (torch.Tensor): The audio embeddings tensor.
        mask (torch.Tensor): Hard face mask for face locator.
        full_mask (torch.Tensor): Pose Mask.
        face_mask (torch.Tensor): Face Mask
        lip_mask (torch.Tensor): Lip Mask
        uncond_img_fwd (bool): A flag indicating whether to perform reference image unconditional forward pass.
        uncond_audio_fwd (bool): A flag indicating whether to perform audio unconditional forward pass.

    Returns:
        torch.Tensor: The output tensor of the neural network model.
    """
    def __init__(
        self,
        reference_unet: UNet2DConditionModel,
        denoising_unet: UNet3DConditionModel,
        face_locator: FaceLocator,
        reference_control_writer,
        reference_control_reader,
        imageproj,
        audioproj,
    ):
        super().__init__()
        self.reference_unet = reference_unet
        self.denoising_unet = denoising_unet
        self.face_locator = face_locator
        self.reference_control_writer = reference_control_writer
        self.reference_control_reader = reference_control_reader
        self.imageproj = imageproj
        self.audioproj = audioproj

    def forward(
        self,
        noisy_latents: torch.Tensor,
        timesteps: torch.Tensor,
        ref_image_latents: torch.Tensor,
        face_emb: torch.Tensor,
        audio_emb: torch.Tensor,
        mask: torch.Tensor,
        full_mask: torch.Tensor,
        face_mask: torch.Tensor,
        lip_mask: torch.Tensor,
        uncond_img_fwd: bool = False,
        uncond_audio_fwd: bool = False,
    ):
        """
        simple docstring to prevent pylint error
        """
        face_emb = self.imageproj(face_emb)
        mask = mask.to(device=device)
        mask_feature = self.face_locator(mask)
        audio_emb = audio_emb.to(
            device=self.audioproj.device, dtype=self.audioproj.dtype)
        audio_emb = self.audioproj(audio_emb)

        # condition forward
        if not uncond_img_fwd:
            ref_timesteps = torch.zeros_like(timesteps)
            ref_timesteps = repeat(
                ref_timesteps,
                "b -> (repeat b)",
                repeat=ref_image_latents.size(0) // ref_timesteps.size(0),
            )
            self.reference_unet(
                ref_image_latents,
                ref_timesteps,
                encoder_hidden_states=face_emb,
                return_dict=False,
            )
            self.reference_control_reader.update(self.reference_control_writer)

        if uncond_audio_fwd:
            audio_emb = torch.zeros_like(audio_emb).to(
                device=audio_emb.device, dtype=audio_emb.dtype
            )

        model_pred = self.denoising_unet(
            noisy_latents,
            timesteps,
            mask_cond_fea=mask_feature,
            encoder_hidden_states=face_emb,
            audio_embedding=audio_emb,
            full_mask=full_mask,
            face_mask=face_mask,
            lip_mask=lip_mask
        ).sample

        return model_pred


def get_attention_mask(mask: torch.Tensor, weight_dtype: torch.dtype) -> torch.Tensor:
    """
    Rearrange the mask tensors to the required format.

    Args:
        mask (torch.Tensor): The input mask tensor.
        weight_dtype (torch.dtype): The data type for the mask tensor.

    Returns:
        torch.Tensor: The rearranged mask tensor.
    """
    if isinstance(mask, List):
        _mask = []
        for m in mask:
            _mask.append(
                rearrange(m, "b f 1 h w -> (b f) (h w)").to(weight_dtype))
        return _mask
    mask = rearrange(mask, "b f 1 h w -> (b f) (h w)").to(weight_dtype)
    return mask


def get_noise_scheduler(cfg: argparse.Namespace) -> Tuple[DDIMScheduler, DDIMScheduler]:
    """
    Create noise scheduler for training.

    Args:
        cfg (argparse.Namespace): Configuration object.

    Returns:
        Tuple[DDIMScheduler, DDIMScheduler]: Train noise scheduler and validation noise scheduler.
    """

    sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs)
    if cfg.enable_zero_snr:
        sched_kwargs.update(
            rescale_betas_zero_snr=True,
            timestep_spacing="trailing",
            prediction_type="v_prediction",
        )
    val_noise_scheduler = DDIMScheduler(**sched_kwargs)
    sched_kwargs.update({"beta_schedule": "scaled_linear"})
    train_noise_scheduler = DDIMScheduler(**sched_kwargs)

    return train_noise_scheduler, val_noise_scheduler


def process_audio_emb(audio_emb: torch.Tensor) -> torch.Tensor:
    """
    Process the audio embedding to concatenate with other tensors.

    Parameters:
        audio_emb (torch.Tensor): The audio embedding tensor to process.

    Returns:
        concatenated_tensors (List[torch.Tensor]): The concatenated tensor list.
    """
    concatenated_tensors = []

    for i in range(audio_emb.shape[0]):
        vectors_to_concat = [
            audio_emb[max(min(i + j, audio_emb.shape[0] - 1), 0)]for j in range(-2, 3)]
        concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0))

    audio_emb = torch.stack(concatenated_tensors, dim=0)

    return audio_emb


def log_validation(
    accelerator: Accelerator,
    vae: AutoencoderKL,
    net: Net,
    scheduler: DDIMScheduler,
    width: int,
    height: int,
    clip_length: int = 24,
    generator: torch.Generator = None,
    cfg: dict = None,
    save_dir: str = None,
    global_step: int = 0,
    times: int = None,
    face_analysis_model_path: str = "",
) -> None:
    """
    Log validation video during the training process.

    Args:
        accelerator (Accelerator): The accelerator for distributed training.
        vae (AutoencoderKL): The autoencoder model.
        net (Net): The main neural network model.
        scheduler (DDIMScheduler): The scheduler for noise.
        width (int): The width of the input images.
        height (int): The height of the input images.
        clip_length (int): The length of the video clips. Defaults to 24.
        generator (torch.Generator): The random number generator. Defaults to None.
        cfg (dict): The configuration dictionary. Defaults to None.
        save_dir (str): The directory to save validation results. Defaults to None.
        global_step (int): The current global step in training. Defaults to 0.
        times (int): The number of inference times. Defaults to None.
        face_analysis_model_path (str): The path to the face analysis model. Defaults to "".

    Returns:
        torch.Tensor: The tensor result of the validation.
    """
    ori_net = accelerator.unwrap_model(net)
    reference_unet = ori_net.reference_unet
    denoising_unet = ori_net.denoising_unet
    face_locator = ori_net.face_locator
    imageproj = ori_net.imageproj
    audioproj = ori_net.audioproj
    tmp_denoising_unet = copy.deepcopy(denoising_unet)

    pipeline = FaceAnimatePipeline(
        vae=vae,
        reference_unet=reference_unet,
        denoising_unet=tmp_denoising_unet,
        face_locator=face_locator,
        image_proj=imageproj,
        scheduler=scheduler,
    )
    pipeline = pipeline.to(device)

    image_processor = ImageProcessor((width, height), face_analysis_model_path)
    audio_processor = AudioProcessor(
        cfg.data.sample_rate,
        cfg.data.fps,
        cfg.wav2vec_config.model_path,
        cfg.wav2vec_config.features == "last",
        os.path.dirname(cfg.audio_separator.model_path),
        os.path.basename(cfg.audio_separator.model_path),
        os.path.join(save_dir, '.cache', "audio_preprocess"),
        device=device,
    )
    return cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length


def inference(cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length):
    ref_img_path = cfg.ref_img_path
    audio_path = cfg.audio_path
    source_image_pixels, \
    source_image_face_region, \
    source_image_face_emb, \
    source_image_full_mask, \
    source_image_face_mask, \
    source_image_lip_mask = image_processor.preprocess(
        ref_img_path, os.path.join(save_dir, '.cache'), cfg.face_expand_ratio)
    audio_emb, audio_length = audio_processor.preprocess(
        audio_path, clip_length)

    audio_emb = process_audio_emb(audio_emb)

    source_image_pixels = source_image_pixels.unsqueeze(0)
    source_image_face_region = source_image_face_region.unsqueeze(0)
    source_image_face_emb = source_image_face_emb.reshape(1, -1)
    source_image_face_emb = torch.tensor(source_image_face_emb)

    source_image_full_mask = [
        (mask.repeat(clip_length, 1))
        for mask in source_image_full_mask
    ]
    source_image_face_mask = [
        (mask.repeat(clip_length, 1))
        for mask in source_image_face_mask
    ]
    source_image_lip_mask = [
        (mask.repeat(clip_length, 1))
        for mask in source_image_lip_mask
    ]

    times = audio_emb.shape[0] // clip_length
    tensor_result = []
    # generator = torch.manual_seed(42)
    generator = torch.cuda.manual_seed_all(42) # use cuda seed all
    for t in range(times):
        print(f"[{t+1}/{times}]")

        if len(tensor_result) == 0:
            # The first iteration
            motion_zeros = source_image_pixels.repeat(
                cfg.data.n_motion_frames, 1, 1, 1)
            motion_zeros = motion_zeros.to(
                dtype=source_image_pixels.dtype, device=source_image_pixels.device)
            pixel_values_ref_img = torch.cat(
                [source_image_pixels, motion_zeros], dim=0)  # concat the ref image and the first motion frames
        else:
            motion_frames = tensor_result[-1][0]
            motion_frames = motion_frames.permute(1, 0, 2, 3)
            motion_frames = motion_frames[0 - cfg.data.n_motion_frames:]
            motion_frames = motion_frames * 2.0 - 1.0
            motion_frames = motion_frames.to(
                dtype=source_image_pixels.dtype, device=source_image_pixels.device)
            pixel_values_ref_img = torch.cat(
                [source_image_pixels, motion_frames], dim=0)  # concat the ref image and the motion frames

        pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)

        audio_tensor = audio_emb[
            t * clip_length: min((t + 1) * clip_length, audio_emb.shape[0])
        ]
        audio_tensor = audio_tensor.unsqueeze(0)
        audio_tensor = audio_tensor.to(
            device=audioproj.device, dtype=audioproj.dtype)
        audio_tensor = audioproj(audio_tensor)

        pipeline_output = pipeline(
            ref_image=pixel_values_ref_img,
            audio_tensor=audio_tensor,
            face_emb=source_image_face_emb,
            face_mask=source_image_face_region,
            pixel_values_full_mask=source_image_full_mask,
            pixel_values_face_mask=source_image_face_mask,
            pixel_values_lip_mask=source_image_lip_mask,
            width=cfg.data.train_width,
            height=cfg.data.train_height,
            video_length=clip_length,
            num_inference_steps=cfg.inference_steps,
            guidance_scale=cfg.cfg_scale,
            generator=generator,
        )

        tensor_result.append(pipeline_output.videos)

    tensor_result = torch.cat(tensor_result, dim=2)
    tensor_result = tensor_result.squeeze(0)
    tensor_result = tensor_result[:, :audio_length]
    output_file = cfg.output
    tensor_to_video(tensor_result, output_file, audio_path)
    return output_file


def get_model(cfg: argparse.Namespace) -> None:
    """
    Trains the model using the given configuration (cfg).

    Args:
        cfg (dict): The configuration dictionary containing the parameters for training.

    Notes:
        - This function trains the model using the given configuration.
        - It initializes the necessary components for training, such as the pipeline, optimizer, and scheduler.
        - The training progress is logged and tracked using the accelerator.
        - The trained model is saved after the training is completed.
    """
    kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
    accelerator = Accelerator(
        gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps,
        mixed_precision=cfg.solver.mixed_precision,
        log_with="mlflow",
        project_dir="./mlruns",
        kwargs_handlers=[kwargs],
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if cfg.seed is not None:
        seed_everything(cfg.seed)

    # create output dir for training
    exp_name = cfg.exp_name
    save_dir = f"{cfg.output_dir}/{exp_name}"
    validation_dir = save_dir
    if accelerator.is_main_process:
        init_output_dir([save_dir])

    accelerator.wait_for_everyone()

    if cfg.weight_dtype == "fp16":
        weight_dtype = torch.float16
    elif cfg.weight_dtype == "bf16":
        weight_dtype = torch.bfloat16
    elif cfg.weight_dtype == "fp32":
        weight_dtype = torch.float32
    else:
        raise ValueError(
            f"Do not support weight dtype: {cfg.weight_dtype} during training"
        )
    
    if not torch.cuda.is_available():
        weight_dtype = torch.float32

    # Create Models
    vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to(
        device=device, dtype=weight_dtype
    )
    reference_unet = UNet2DConditionModel.from_pretrained(
        cfg.base_model_path,
        subfolder="unet",
    ).to(device=device, dtype=weight_dtype)
    denoising_unet = UNet3DConditionModel.from_pretrained_2d(
        cfg.base_model_path,
        cfg.mm_path,
        subfolder="unet",
        unet_additional_kwargs=OmegaConf.to_container(
            cfg.unet_additional_kwargs),
        use_landmark=False
    ).to(device=device, dtype=weight_dtype)
    imageproj = ImageProjModel(
        cross_attention_dim=denoising_unet.config.cross_attention_dim,
        clip_embeddings_dim=512,
        clip_extra_context_tokens=4,
    ).to(device=device, dtype=weight_dtype)
    face_locator = FaceLocator(
        conditioning_embedding_channels=320,
    ).to(device=device, dtype=weight_dtype)
    audioproj = AudioProjModel(
        seq_len=5,
        blocks=12,
        channels=768,
        intermediate_dim=512,
        output_dim=768,
        context_tokens=32,
    ).to(device=device, dtype=weight_dtype)

    # Freeze
    vae.requires_grad_(False)
    imageproj.requires_grad_(False)
    reference_unet.requires_grad_(False)
    denoising_unet.requires_grad_(False)
    face_locator.requires_grad_(False)
    audioproj.requires_grad_(True)

    # Set motion module learnable
    trainable_modules = cfg.trainable_para
    for name, module in denoising_unet.named_modules():
        if any(trainable_mod in name for trainable_mod in trainable_modules):
            for params in module.parameters():
                params.requires_grad_(True)

    reference_control_writer = ReferenceAttentionControl(
        reference_unet,
        do_classifier_free_guidance=False,
        mode="write",
        fusion_blocks="full",
    )
    reference_control_reader = ReferenceAttentionControl(
        denoising_unet,
        do_classifier_free_guidance=False,
        mode="read",
        fusion_blocks="full",
    )

    net = Net(
        reference_unet,
        denoising_unet,
        face_locator,
        reference_control_writer,
        reference_control_reader,
        imageproj,
        audioproj,
    ).to(dtype=weight_dtype)

    m,u = net.load_state_dict(
        torch.load(
            cfg.audio_ckpt_dir,
            map_location="cpu",
        ),
    )
    assert len(m) == 0 and len(u) == 0, "Fail to load correct checkpoint."
    print("loaded weight from ", os.path.join(cfg.audio_ckpt_dir))

    # get noise scheduler
    _, val_noise_scheduler = get_noise_scheduler(cfg)

    if cfg.solver.enable_xformers_memory_efficient_attention and torch.cuda.is_available():
        if is_xformers_available():
            reference_unet.enable_xformers_memory_efficient_attention()
            denoising_unet.enable_xformers_memory_efficient_attention()

        else:
            raise ValueError(
                "xformers is not available. Make sure it is installed correctly"
            )

    if cfg.solver.gradient_checkpointing:
        reference_unet.enable_gradient_checkpointing()
        denoising_unet.enable_gradient_checkpointing()

    if cfg.solver.scale_lr:
        learning_rate = (
            cfg.solver.learning_rate
            * cfg.solver.gradient_accumulation_steps
            * cfg.data.train_bs
            * accelerator.num_processes
        )
    else:
        learning_rate = cfg.solver.learning_rate

    # Initialize the optimizer
    optimizer_cls = torch.optim.AdamW

    trainable_params = list(
        filter(lambda p: p.requires_grad, net.parameters()))

    optimizer = optimizer_cls(
        trainable_params,
        lr=learning_rate,
        betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
        weight_decay=cfg.solver.adam_weight_decay,
        eps=cfg.solver.adam_epsilon,
    )

    # Scheduler
    lr_scheduler = get_scheduler(
        cfg.solver.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=cfg.solver.lr_warmup_steps
        * cfg.solver.gradient_accumulation_steps,
        num_training_steps=cfg.solver.max_train_steps
        * cfg.solver.gradient_accumulation_steps,
    )

    # get data loader
    train_dataset = TalkingVideoDataset(
        img_size=(cfg.data.train_width, cfg.data.train_height),
        sample_rate=cfg.data.sample_rate,
        n_sample_frames=cfg.data.n_sample_frames,
        n_motion_frames=cfg.data.n_motion_frames,
        audio_margin=cfg.data.audio_margin,
        data_meta_paths=cfg.data.train_meta_paths,
        wav2vec_cfg=cfg.wav2vec_config,
    )
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=16
    )

    # Prepare everything with our `accelerator`.
    (
        net,
        optimizer,
        train_dataloader,
        lr_scheduler,
    ) = accelerator.prepare(
        net,
        optimizer,
        train_dataloader,
        lr_scheduler,
    )

    return accelerator, vae, net, val_noise_scheduler, cfg, validation_dir


def load_config(config_path: str) -> dict:
    """
    Loads the configuration file.

    Args:
        config_path (str): Path to the configuration file.

    Returns:
        dict: The configuration dictionary.
    """

    if config_path.endswith(".yaml"):
        return OmegaConf.load(config_path)
    if config_path.endswith(".py"):
        return import_filename(config_path).cfg
    raise ValueError("Unsupported format for config file")

args = argparse.Namespace()
_config = load_config('configs/inference/inference.yaml')
for key, value in _config.items():
    setattr(args, key, value)
accelerator, vae, net, val_noise_scheduler, cfg, validation_dir = get_model(args)
cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length = log_validation(
        accelerator=accelerator,
        vae=vae,
        net=net,
        scheduler=val_noise_scheduler,
        width=cfg.data.train_width,
        height=cfg.data.train_height,
        clip_length=cfg.data.n_sample_frames,
        cfg=cfg,
        save_dir=validation_dir,
        global_step=0,
        times=cfg.single_inference_times if cfg.single_inference_times is not None else None,
        face_analysis_model_path=cfg.face_analysis_model_path
    )

def predict(image, audio, pose_weight, face_weight, lip_weight, face_expand_ratio, progress=gr.Progress(track_tqdm=True)):
    """
    Create a gradio interface with the configs.
    """
    _ = progress
    unique_id = uuid.uuid4()
    config = {
        'ref_img_path': image,
        'audio_path': audio,
        'pose_weight': pose_weight,
        'face_weight': face_weight,
        'lip_weight': lip_weight,
        'face_expand_ratio': face_expand_ratio,
        'config': 'configs/inference/inference.yaml',
        'checkpoint': None,
        'output': f'output-{unique_id}.mp4'
    }
    global cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length
    for key, value in config.items():
        setattr(cfg, key, value)

    return inference(cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length)