Spaces:
Running
Running
add app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
-
from logging import getLogger
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import torchaudio
|
6 |
from denoisers import WaveUNetModel
|
7 |
|
8 |
-
LOGGER = getLogger(__name__)
|
9 |
MODEL = WaveUNetModel.from_pretrained("wrice/waveunet-vctk-24khz")
|
10 |
|
11 |
|
@@ -14,8 +11,8 @@ def denoise(inputs):
|
|
14 |
audio = torch.from_numpy(audio)[None]
|
15 |
audio = audio / 32768.0
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
if sr != MODEL.config.sample_rate:
|
21 |
audio = torchaudio.functional.resample(audio, sr, MODEL.config.sample_rate)
|
@@ -35,7 +32,7 @@ def denoise(inputs):
|
|
35 |
denoised = torch.concat(clean)[:, : audio.shape[-1]].squeeze().clamp(-1.0, 1.0)
|
36 |
denoised = (denoised * 32767.0).numpy().astype("int16")
|
37 |
|
38 |
-
|
39 |
|
40 |
return MODEL.config.sample_rate, denoised
|
41 |
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
from denoisers import WaveUNetModel
|
5 |
|
|
|
6 |
MODEL = WaveUNetModel.from_pretrained("wrice/waveunet-vctk-24khz")
|
7 |
|
8 |
|
|
|
11 |
audio = torch.from_numpy(audio)[None]
|
12 |
audio = audio / 32768.0
|
13 |
|
14 |
+
print(f"Audio shape: {audio.shape}")
|
15 |
+
print(f"Sample rate: {sr}")
|
16 |
|
17 |
if sr != MODEL.config.sample_rate:
|
18 |
audio = torchaudio.functional.resample(audio, sr, MODEL.config.sample_rate)
|
|
|
32 |
denoised = torch.concat(clean)[:, : audio.shape[-1]].squeeze().clamp(-1.0, 1.0)
|
33 |
denoised = (denoised * 32767.0).numpy().astype("int16")
|
34 |
|
35 |
+
print(f"Denoised shape: {denoised.shape}")
|
36 |
|
37 |
return MODEL.config.sample_rate, denoised
|
38 |
|