audio_denoiser / app.py
wrice's picture
handle multi-channel audio
3d1e219
raw
history blame
1.75 kB
"""Gradio demo for denoisers."""
import gradio as gr
import numpy as np
import torch
import torchaudio
from denoisers import UNet1DModel, WaveUNetModel
from tqdm import tqdm
MODELS = [
"wrice/unet1d-vctk-48khz",
"wrice/waveunet-vctk-48khz",
"wrice/waveunet-vctk-24khz",
]
def denoise(model_name, inputs):
"""Denoise audio."""
if "unet1d" in model_name:
model = UNet1DModel.from_pretrained(model_name)
else:
model = WaveUNetModel.from_pretrained(model_name)
sr, audio = inputs
audio = torch.from_numpy(audio)[None]
audio = audio / 32768.0
audio = audio.permute(0, 2, 1)
print(f"Audio shape: {audio.shape}")
print(f"Sample rate: {sr}")
if audio.shape[1] > 1:
audio = audio.mean(1, keepdim=True)
print(f"Audio shape: {audio.shape}")
if sr != model.config.sample_rate:
audio = torchaudio.functional.resample(audio, sr, model.config.sample_rate)
chunk_size = model.config.max_length
padding = abs(audio.size(-1) % chunk_size - chunk_size)
padded = torch.nn.functional.pad(audio, (0, padding))
clean = []
for i in tqdm(range(0, padded.shape[-1], chunk_size)):
audio_chunk = padded[:, :, i : i + chunk_size]
with torch.no_grad():
clean_chunk = model(audio_chunk).logits
clean.append(clean_chunk.squeeze(0))
denoised = torch.concat(clean, 1)[:, : audio.shape[-1]].clamp(-1.0, 1.0)
denoised = (denoised * 32767.0).numpy().astype(np.int16)
print(f"Denoised shape: {denoised.shape}")
return model.config.sample_rate, denoised.transpose()
iface = gr.Interface(
fn=denoise,
inputs=[gr.Dropdown(choices=MODELS, value=MODELS[0]), "audio"],
outputs="audio",
)
iface.launch()