from fastapi import APIRouter, HTTPException from pydantic import BaseModel, HttpUrl from typing import Dict, Any, List import logging import os from supabase import create_client from mediaunmasked.scrapers.article_scraper import ArticleScraper from mediaunmasked.analyzers.scoring import MediaScorer from mediaunmasked.utils.logging_config import setup_logging # Initialize logging setup_logging() logger = logging.getLogger(__name__) # Initialize router and dependencies router = APIRouter(tags=["analysis"]) scraper = ArticleScraper() scorer = MediaScorer() # Initialize Supabase connection (works for async environments) SUPABASE_URL = os.getenv("SUPABASE_URL") SUPABASE_KEY = os.getenv("SUPABASE_KEY") supabase = create_client(SUPABASE_URL, SUPABASE_KEY) # This works for async class ArticleRequest(BaseModel): url: HttpUrl class MediaScoreDetails(BaseModel): headline_analysis: Dict[str, Any] sentiment_analysis: Dict[str, Any] bias_analysis: Dict[str, Any] evidence_analysis: Dict[str, Any] class MediaScore(BaseModel): media_unmasked_score: float rating: str details: MediaScoreDetails class AnalysisResponse(BaseModel): headline: str content: str sentiment: str bias: str bias_score: float bias_percentage: float flagged_phrases: List[str] media_score: MediaScore @router.post("/analyze", response_model=AnalysisResponse) async def analyze_article(request: ArticleRequest) -> AnalysisResponse: """ Analyze an article for bias, sentiment, and credibility. Args: request: ArticleRequest containing the URL to analyze Returns: AnalysisResponse with complete analysis results Raises: HTTPException: If scraping or analysis fails """ try: logger.info(f"Analyzing article: {request.url}") # Check if the article has already been analyzed existing_article = await supabase.table('article_analysis').select('*').eq('url', str(request.url)).execute() if existing_article.status_code == 200 and existing_article.data: logger.info("Article already analyzed. Returning cached data.") # Return the existing analysis result if it exists cached_data = existing_article.data[0] return AnalysisResponse.parse_obj(cached_data) # Scrape article article = scraper.scrape_article(str(request.url)) if not article: raise HTTPException( status_code=400, detail="Failed to scrape article content" ) # Analyze content analysis = scorer.calculate_media_score( article["headline"], article["content"] ) # Log raw values for debugging logger.info("Raw values:") logger.info(f"media_unmasked_score type: {type(analysis['media_unmasked_score'])}") logger.info(f"media_unmasked_score value: {analysis['media_unmasked_score']}") # Prepare response data response_dict = { "headline": str(article['headline']), "content": str(article['content']), "sentiment": str(analysis['details']['sentiment_analysis']['sentiment']), "bias": str(analysis['details']['bias_analysis']['bias']), "bias_score": float(analysis['details']['bias_analysis']['bias_score']), "bias_percentage": float(analysis['details']['bias_analysis']['bias_percentage']), "flagged_phrases": list(analysis['details']['sentiment_analysis']['flagged_phrases']), "media_score": { "media_unmasked_score": float(analysis['media_unmasked_score']), "rating": str(analysis['rating']), "details": { "headline_analysis": { "headline_vs_content_score": float(analysis['details']['headline_analysis']['headline_vs_content_score']), "contradictory_phrases": analysis['details']['headline_analysis'].get('contradictory_phrases', []) }, "sentiment_analysis": { "sentiment": str(analysis['details']['sentiment_analysis']['sentiment']), "manipulation_score": float(analysis['details']['sentiment_analysis']['manipulation_score']), "flagged_phrases": list(analysis['details']['sentiment_analysis']['flagged_phrases']) }, "bias_analysis": { "bias": str(analysis['details']['bias_analysis']['bias']), "bias_score": float(analysis['details']['bias_analysis']['bias_score']), "bias_percentage": float(analysis['details']['bias_analysis']['bias_percentage']) }, "evidence_analysis": { "evidence_based_score": float(analysis['details']['evidence_analysis']['evidence_based_score']) } } } } # Save the new analysis to Supabase await supabase.table('article_analysis').upsert({ 'url': str(request.url), 'headline': response_dict['headline'], 'content': response_dict['content'], 'sentiment': response_dict['sentiment'], 'bias': response_dict['bias'], 'bias_score': response_dict['bias_score'], 'bias_percentage': response_dict['bias_percentage'], 'flagged_phrases': response_dict['flagged_phrases'], 'media_score': response_dict['media_score'] }).execute() # Return the response return AnalysisResponse.parse_obj(response_dict) except Exception as e: logger.error(f"Analysis failed: {str(e)}", exc_info=True) raise HTTPException( status_code=500, detail=f"Analysis failed: {str(e)}" ) @router.get("/debug") async def debug_response(): mock_analysis = { "headline": "Test Headline", "content": "Test content", "sentiment": "Neutral", "bias": "Neutral", "bias_score": 0.75, # Note: 0-1 scale "bias_percentage": 0, "flagged_phrases": ["test phrase"], "media_score": { "media_unmasked_score": 75.5, "rating": "Some Bias Present", "details": { "headline_analysis": { "headline_vs_content_score": 20, "contradictory_phrases": ["Sample contradiction"] }, "sentiment_analysis": { "sentiment": "Neutral", "manipulation_score": 30, "flagged_phrases": ["Sample manipulative phrase"] }, "bias_analysis": { "bias": "Neutral", "bias_score": 0.75, "bias_percentage": 0 }, "evidence_analysis": { "evidence_based_score": 80 } } } } return AnalysisResponse.parse_obj(mock_analysis)