Spaces:
Running
Running
File size: 6,292 Bytes
a1c1173 a11d742 a1c1173 a11d742 a1c1173 876b12f a1c1173 876b12f a1c1173 a11d742 9a2420b a11d742 a1c1173 876b12f a1c1173 a11d742 a1c1173 9a2420b a11d742 876b12f a1c1173 a11d742 a1c1173 a11d742 a1c1173 876b12f a1c1173 a11d742 a1c1173 a11d742 a1c1173 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, HttpUrl, Field
from typing import Dict, Any, List
import logging
import sys
import os
# Add src to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'src'))
from mediaunmasked.scrapers.article_scraper import ArticleScraper
from mediaunmasked.analyzers.scoring import MediaScorer
from mediaunmasked.utils.logging_config import setup_logging
# Initialize logging
setup_logging()
logger = logging.getLogger(__name__)
# Initialize FastAPI with dependencies
app = FastAPI()
scraper = ArticleScraper()
scorer = MediaScorer()
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ArticleRequest(BaseModel):
url: HttpUrl
class MediaScoreDetails(BaseModel):
headline_analysis: Dict[str, Any]
sentiment_analysis: Dict[str, Any]
bias_analysis: Dict[str, Any]
evidence_analysis: Dict[str, Any]
class MediaScore(BaseModel):
media_unmasked_score: float
rating: str
details: MediaScoreDetails
class AnalysisResponse(BaseModel):
headline: str
content: str
sentiment: str
bias: str
bias_score: float
bias_percentage: float
flagged_phrases: List[str]
media_score: MediaScore
@app.post("/analyze", response_model=AnalysisResponse)
async def analyze_article(request: ArticleRequest) -> AnalysisResponse:
"""
Analyze an article for bias, sentiment, and credibility.
Args:
request: ArticleRequest containing the URL to analyze
Returns:
AnalysisResponse with complete analysis results
Raises:
HTTPException: If scraping or analysis fails
"""
try:
logger.info(f"Analyzing article: {request.url}")
# Scrape article
article = scraper.scrape_article(str(request.url))
if not article:
raise HTTPException(
status_code=400,
detail="Failed to scrape article content"
)
# Analyze content
analysis = scorer.calculate_media_score(
article["headline"],
article["content"]
)
# Log raw values for debugging
logger.info("Raw values:")
logger.info(f"media_unmasked_score type: {type(analysis['media_unmasked_score'])}")
logger.info(f"media_unmasked_score value: {analysis['media_unmasked_score']}")
# Ensure correct types in response
response_dict = {
"headline": str(article['headline']),
"content": str(article['content']),
"sentiment": str(analysis['details']['sentiment_analysis']['sentiment']),
"bias": str(analysis['details']['bias_analysis']['bias']),
"bias_score": float(analysis['details']['bias_analysis']['bias_score']),
"bias_percentage": float(analysis['details']['bias_analysis']['bias_percentage']),
"flagged_phrases": list(analysis['details']['sentiment_analysis']['flagged_phrases']),
"media_score": {
"media_unmasked_score": float(analysis['media_unmasked_score']),
"rating": str(analysis['rating']),
"details": {
"headline_analysis": {
"headline_vs_content_score": float(analysis['details']['headline_analysis']['headline_vs_content_score']),
"contradictory_phrases": analysis['details']['headline_analysis'].get('contradictory_phrases', [])
},
"sentiment_analysis": {
"sentiment": str(analysis['details']['sentiment_analysis']['sentiment']),
"manipulation_score": float(analysis['details']['sentiment_analysis']['manipulation_score']),
"flagged_phrases": list(analysis['details']['sentiment_analysis']['flagged_phrases'])
},
"bias_analysis": {
"bias": str(analysis['details']['bias_analysis']['bias']),
"bias_score": float(analysis['details']['bias_analysis']['bias_score']),
"bias_percentage": float(analysis['details']['bias_analysis']['bias_percentage'])
},
"evidence_analysis": {
"evidence_based_score": float(analysis['details']['evidence_analysis']['evidence_based_score'])
}
}
}
}
# Log the final structure
logger.info("Final response structure:")
logger.info(response_dict)
return AnalysisResponse.parse_obj(response_dict)
except Exception as e:
logger.error(f"Analysis failed: {str(e)}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Analysis failed: {str(e)}"
)
@app.get("/api/debug")
async def debug_response():
mock_analysis = {
"headline": "Test Headline",
"content": "Test content",
"sentiment": "Neutral",
"bias": "Neutral",
"bias_score": 0.75, # Note: 0-1 scale
"bias_percentage": 0,
"flagged_phrases": ["test phrase"],
"media_score": {
"media_unmasked_score": 75.5,
"rating": "Some Bias Present",
"details": {
"headline_analysis": {
"headline_vs_content_score": 20,
"contradictory_phrases": ["Sample contradiction"]
},
"sentiment_analysis": {
"sentiment": "Neutral",
"manipulation_score": 30,
"flagged_phrases": ["Sample manipulative phrase"]
},
"bias_analysis": {
"bias": "Neutral",
"bias_score": 0.75,
"bias_percentage": 0
},
"evidence_analysis": {
"evidence_based_score": 80
}
}
}
}
return AnalysisResponse.parse_obj(mock_analysis) |