import os os.system("pip install torch transformers accelerate") from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import requests import json from accelerate import Accelerator SYSTEM_PROMPT = "As a generative chatbot (you are not a GPT but your structure is 50% the same), your primary function is to provide helpful and friendly responses to user queries. Feel free to add some personality, but make sure your responses are accurate and helpful. Your owner and developer is: @Costikoooo (Discord user) other developers are unknown. Your name is Chattybot." TITLE = "Chattybot" EXAMPLE_INPUT = "hello" # Use your provided tokenizer and model tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b') model = AutoModelForCausalLM.from_pretrained( 'stabilityai/stablelm-zephyr-3b', trust_remote_code=True, device_map="auto" ) HF_TOKEN = os.getenv("HF_TOKEN") HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} # Initialize Accelerator accelerator = Accelerator() # Wrap model and tokenizer with accelerator model, tokenizer = accelerator.prepare(model, tokenizer) def build_input_prompt(message, chatbot, system_prompt): input_prompt = "\n" + system_prompt + "\n\n" for interaction in chatbot: input_prompt = input_prompt + str(interaction[0]) + "\n\n" + str(interaction[1]) + "\n\n\n" input_prompt = input_prompt + str(message) + "\n" return input_prompt def predict_beta(message, chatbot=[], system_prompt=""): input_prompt = build_input_prompt(message, chatbot, system_prompt) inputs = tokenizer(input_prompt, return_tensors="pt") with accelerator.device(): tokens = model.generate( inputs["input_ids"], max_length=1024, temperature=0.8, do_sample=True ) bot_message = tokenizer.decode(tokens[0], skip_special_tokens=True) return bot_message def test_preview_chatbot(message, history): response = predict_beta(message, history, SYSTEM_PROMPT) text_start = response.rfind("") + len("") response = response[text_start:] return response welcome_preview_message = f""" Welcome to **{TITLE}**! Say something like: "{EXAMPLE_INPUT}" """ chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)]) textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT) demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview) demo.launch()