from huggingface_hub import InferenceClient import gradio as gr import json client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) DATABASE_PATH = "database.json" def load_database(): try: with open(DATABASE_PATH, "r") as file: return json.load(file) except FileNotFoundError: return {} def save_database(database): with open(DATABASE_PATH, "w") as file: json.dump(database, file) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate_response(prompt, database): if prompt in database: return database[prompt] else: response = next(client.text_generation(prompt, details=True, return_full_text=False)).token.text database[prompt] = response save_database(database) return response def generate( prompt, history, database, temperature=0.9, max_new_tokens=2000, top_p=0.9, repetition_penalty=1.2, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) formatted_prompt = format_prompt(prompt, history) response = generate_response(formatted_prompt, database) yield response database = load_database() css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.ChatInterface( generate, examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."], ["Write a short story about Paris."]], database=database ) demo.launch(debug=True)