Spaces:
Sleeping
Sleeping
| import os | |
| from dotenv import find_dotenv, load_dotenv | |
| import streamlit as st | |
| from typing import Generator | |
| from groq import Groq | |
| import datetime | |
| import json | |
| _ = load_dotenv(find_dotenv()) | |
| st.set_page_config(page_icon="π¬", layout="wide", page_title="...") | |
| def icon(emoji: str): | |
| """Shows an emoji as a Notion-style page icon.""" | |
| st.write( | |
| f'<span style="font-size: 78px; line-height: 1">{emoji}</span>', | |
| unsafe_allow_html=True, | |
| ) | |
| icon("β‘") | |
| st.subheader("Chatbot", divider="rainbow", anchor=False) | |
| client = Groq( | |
| api_key=os.environ['GROQ_API_KEY'], | |
| ) | |
| # Read saved prompts from file | |
| with open("saved_prompts.txt", "r") as f: | |
| saved_prompts = f.read().split("<|>") | |
| prompt_names = [p.split(" ", 1)[0] for p in saved_prompts] | |
| prompt_map = {name: prompt for name, prompt in zip(prompt_names, saved_prompts)} | |
| # Initialize chat history and selected model | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| if "selected_model" not in st.session_state: | |
| st.session_state.selected_model = None | |
| # Define model details | |
| models = { | |
| "mixtral-8x7b-32768": { | |
| "name": "Mixtral-8x7b-Instruct-v0.1", | |
| "tokens": 32768, | |
| "developer": "Mistral", | |
| }, | |
| "gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"}, | |
| "llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"}, | |
| "llama3-70b-8192": {"name": "LLaMA3-70b-8192", "tokens": 8192, "developer": "Meta"}, | |
| "llama3-8b-8192": {"name": "LLaMA3-8b-8192", "tokens": 8192, "developer": "Meta"}, | |
| } | |
| # Layout for model selection and max_tokens slider | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| model_option = st.selectbox( | |
| "Choose a model:", | |
| options=list(models.keys()), | |
| format_func=lambda x: models[x]["name"], | |
| index=0, # Default to the first model in the list | |
| ) | |
| # Add prompt dropdown | |
| prompt_option = st.selectbox("Choose a prompt:", options=prompt_names) | |
| if not prompt_option: | |
| prompt = "" | |
| else: | |
| prompt = prompt_map[prompt_option] | |
| # Detect model change and clear chat history if model has changed | |
| if st.session_state.selected_model != model_option: | |
| st.session_state.messages = [] | |
| st.session_state.selected_model = model_option | |
| max_tokens_range = models[model_option]["tokens"] | |
| with col2: | |
| # Adjust max_tokens slider dynamically based on the selected model | |
| max_tokens = st.slider( | |
| "Max Tokens:", | |
| min_value=512, # Minimum value to allow some flexibility | |
| max_value=max_tokens_range, | |
| # Default value or max allowed if less | |
| value=min(32768, max_tokens_range), | |
| step=512, | |
| help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}", | |
| ) | |
| # Display chat messages from history on app rerun | |
| for message in st.session_state.messages: | |
| avatar = "π§ " if message["role"] == "assistant" else "β" | |
| with st.chat_message(message["role"], avatar=avatar): | |
| st.markdown(message["content"]) | |
| def generate_chat_responses(chat_completion) -> Generator[str, None, None]: | |
| """Yield chat response content from the Groq API response.""" | |
| for chunk in chat_completion: | |
| if chunk.choices[0].delta.content: | |
| yield chunk.choices[0].delta.content | |
| if prompt := st.chat_input("Enter your prompt here...", value=prompt): | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| with st.chat_message("user", avatar="β"): | |
| st.markdown(prompt) | |
| # Fetch response from Groq API | |
| try: | |
| chat_completion = client.chat.completions.create( | |
| model=model_option, | |
| messages=[ | |
| {"role": m["role"], "content": m["content"]} | |
| for m in st.session_state.messages | |
| ], | |
| max_tokens=max_tokens, | |
| stream=True, | |
| ) | |
| # Use the generator function with st.write_stream | |
| with st.chat_message("assistant", avatar="π§ "): | |
| chat_responses_generator = generate_chat_responses(chat_completion) | |
| full_response = st.write_stream(chat_responses_generator) | |
| except Exception as e: | |
| st.error(e, icon="π¨") | |
| # Append the full response to session_state.messages | |
| if isinstance(full_response, str): | |
| st.session_state.messages.append( | |
| {"role": "assistant", "content": full_response} | |
| ) | |
| else: | |
| # Handle the case where full_response is not a string | |
| combined_response = "\n".join(str(item) for item in full_response) | |
| st.session_state.messages.append( | |
| {"role": "assistant", "content": combined_response} | |
| ) |