File size: 5,130 Bytes
846e270
 
9cf8e68
 
 
d4904e9
 
9cf8e68
846e270
 
9cf8e68
 
 
 
 
 
 
 
d4904e9
9cf8e68
d4904e9
9cf8e68
d4904e9
 
 
9cf8e68
 
d4904e9
 
 
 
 
9e2c057
d4904e9
9cf8e68
 
 
 
 
 
 
 
 
d4904e9
9cf8e68
 
d4904e9
 
 
 
 
 
9cf8e68
 
 
 
 
 
 
 
 
d4904e9
9cf8e68
 
 
 
 
 
 
846e270
9cf8e68
 
 
93d9be5
 
 
 
d4904e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122d511
 
 
 
 
 
 
 
9cf8e68
122d511
 
d4904e9
122d511
 
 
 
d4904e9
122d511
d4904e9
122d511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4904e9
122d511
 
 
 
 
 
d4904e9
 
 
 
 
 
813e436
2c1a7b5
9cf8e68
 
93d9be5
9cf8e68
 
 
93d9be5
 
 
 
9cf8e68
93d9be5
2c1a7b5
93d9be5
d4904e9
 
 
93d9be5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
from dotenv import find_dotenv, load_dotenv
import streamlit as st
from typing import Generator
from groq import Groq
import datetime
import json

_ = load_dotenv(find_dotenv())
st.set_page_config(page_icon="💬", layout="wide", page_title="Groq Chat Bot...")

def icon(emoji: str):
    """Shows an emoji as a Notion-style page icon."""
    st.write(
        f'<span style="font-size: 78px; line-height: 1">{emoji}</span>',
        unsafe_allow_html=True,
    )

icon("📣")

st.subheader("Groq Chat Streamlit App", divider="rainbow", anchor=False)

client = Groq(
    api_key=os.environ['GROQ_API_KEY'],
)

models = {
    "mixtral-8x7b-32768": {
        "name": "Mixtral-8x7b-Instruct-v0.1",
        "tokens": 32768,
        "developer": "Mistral",
    },
    "llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"},
    "gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"},
}

col1, col2 = st.columns(2)

with col1:
    model_option = st.selectbox(
        "Choose a model:",
        options=list(models.keys()),
        format_func=lambda x: models[x]["name"],
        index=0,
    )

if "messages" not in st.session_state:
    st.session_state.messages = []

if "selected_model" not in st.session_state:
    st.session_state.selected_model = None

if st.session_state.selected_model != model_option:
    st.session_state.messages = []
    st.session_state.selected_model = model_option

max_tokens_range = models[model_option]["tokens"]

with col2:
    max_tokens = st.slider(
        "Max Tokens:",
        min_value=512,
        max_value=max_tokens_range,
        value=min(32768, max_tokens_range),
        step=512,
        help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}",
    )

for message in st.session_state.messages:
    avatar = "🤖" if message["role"] == "assistant" else "🕺"
    with st.chat_message(message["role"], avatar=avatar):
        st.markdown(message["content"])

def generate_chat_responses(user_prompt):
    """Fetches response from the Groq API using the run_conversation function."""
    response = run_conversation(user_prompt)
    yield response  # Yield the response content

def run_conversation(user_prompt):
    messages=[
        {
            "role": "system",
            "content": "You are a helpful assistant named ChattyBot."
        },
        {
            "role": "user",
            "content": user_prompt,
        }
    ]
    tools = [
        {
            "type": "function",
            "function": {
                "name": "time_date",
                "description": "The tool will return information about the time and date to the AI.",
                "parameters": {},
            },
        }
    ]
    try:
        response = client.chat.completions.create(
            model=model_option,
            messages=messages,
            tools=tools,
            tool_choice="auto",
            max_tokens=4096
        )

        response_message = response.choices[0].delta
        tool_calls = response_message.tool_calls

        if tool_calls:
            available_functions = {
                "time_date": get_tool_owner_info
            }

            messages.append(response_message)

            for tool_call in tool_calls:
                function_name = tool_call.function.name
                function_to_call = available_functions[function_name]
                function_args = json.loads(tool_call.function.arguments)
                function_response = function_to_call(**function_args)
                messages.append(
                    {
                        "tool_call_id": tool_call.id,
                        "role": "tool",
                        "name": function_name,
                        "content": function_response,
                    }
                )

            second_response = client.chat.completions.create(
                model=model_option,
                messages=messages
            )

            return second_response.choices[0].delta.content
        else:
            return response_message.content
    except Exception as e:
        st.error(e, icon="🚨")
        return None

def get_tool_owner_info():
    owner_info = {
        "date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    }
    return json.dumps(owner_info)

if prompt := st.chat_input("Enter your prompt here..."):
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.chat_message("user", avatar=""):
        st.markdown(prompt)

    try:
        # Use generate_chat_responses with user prompt
        with st.chat_message("assistant", avatar=""):
            chat_responses_generator = generate_chat_responses(prompt)
            full_response = st.write_stream(chat_responses_generator)
    except Exception as e:
        st.error(e, icon="")

    # Append the full response to session_state.messages
    if isinstance(full_response, str):
        st.session_state.messages.append(
            {"role": "assistant", "content": full_response}
        )