Spaces:
Running
on
Zero
Running
on
Zero
Update mask_adapter/sam_maskadapter.py
Browse files
mask_adapter/sam_maskadapter.py
CHANGED
@@ -311,13 +311,13 @@ class SAMPointVisualizationDemo(object):
|
|
311 |
# text_features = self.clip_model.encode_text(text.cuda())
|
312 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
313 |
#np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
|
314 |
-
text_features = self.text_embedding.to(self.
|
315 |
-
features = self.extract_features_convnext(image.to(self.
|
316 |
clip_feature = features['clip_vis_dense']
|
317 |
|
318 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
319 |
|
320 |
-
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(self.
|
321 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)
|
322 |
|
323 |
B, C = clip_feature.size(0), clip_feature.size(1)
|
|
|
311 |
# text_features = self.clip_model.encode_text(text.cuda())
|
312 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
313 |
#np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
|
314 |
+
text_features = self.text_embedding.to(self.mask_adapter.device)
|
315 |
+
features = self.extract_features_convnext(image.to(self.mask_adapter.device).float())
|
316 |
clip_feature = features['clip_vis_dense']
|
317 |
|
318 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
319 |
|
320 |
+
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(self.mask_adapter.device).float())
|
321 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)
|
322 |
|
323 |
B, C = clip_feature.size(0), clip_feature.size(1)
|