Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,777 Bytes
ba4c371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
"""
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates.
Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/maskformer_model.py
"""
from typing import Tuple
import os
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms as T
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom
from .modeling.maft.content_dependent_transfer import ContentDependentTransfer
from .modeling.meta_arch.mask_adapter_head import build_mask_adapter
VILD_PROMPT = [
"a photo of a {}.",
"This is a photo of a {}",
"There is a {} in the scene",
"There is the {} in the scene",
"a photo of a {} in the scene",
"a photo of a small {}.",
"a photo of a medium {}.",
"a photo of a large {}.",
"This is a photo of a small {}.",
"This is a photo of a medium {}.",
"This is a photo of a large {}.",
"There is a small {} in the scene.",
"There is a medium {} in the scene.",
"There is a large {} in the scene.",
]
@META_ARCH_REGISTRY.register()
class MASK_Adapter(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
mask_adapter: nn.Module,
weight_dict,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
mask_threshold: float,
train_metadata,
test_metadata,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
train_maft : bool,
num_output_maps: int,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
mask_adapter: mask-adapter extract semantic activation maps from masks
weight_dict: dict contains weight for each loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.backbone = backbone
self.mask_adapter = mask_adapter
self.weight_dict = weight_dict
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.mask_threshold = mask_threshold
self.train_metadata = train_metadata
self.test_metadata = test_metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
self.test_topk_per_image = test_topk_per_image
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
self.void_embedding = nn.Embedding(1, backbone.dim_latent)
self.train_dataname = None
self.test_dataname = None
self.train_num_templates = {}
self.train_text_classifier = {}
self.train_maft = train_maft
self.num_output_maps = num_output_maps
if self.train_maft:
if '_base' in backbone.model_name.lower():
cdt_params = [640, 8]
elif '_large' in backbone.model_name.lower():
cdt_params = [768, 8]
self.cdt = ContentDependentTransfer(d_model = cdt_params[0], nhead = cdt_params[1], panoptic_on = panoptic_on)
self.freeze_cdt()
def freeze_cdt(self):
for param in self.cdt.parameters():
param.requires_grad = False
#https://github.com/bytedance/fc-clip/blob/2b0bbe213070d44da9182530fa2e826fef03f974/fcclip/fcclip.py#L139
def prepare_class_names_from_metadata(self, metadata, train_metadata):
def split_labels(x):
res = []
for x_ in x:
x_ = x_.replace(', ', ',')
x_ = x_.split(',') # there can be multiple synonyms for single class
res.append(x_)
return res
# get text classifier
try:
class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff
train_class_names = split_labels(train_metadata.stuff_classes)
except:
# this could be for insseg, where only thing_classes are available
class_names = split_labels(metadata.thing_classes)
train_class_names = split_labels(train_metadata.thing_classes)
train_class_names = {l for label in train_class_names for l in label}
category_overlapping_list = []
for test_class_names in class_names:
is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names))
category_overlapping_list.append(is_overlapping)
category_overlapping_mask = torch.tensor(
category_overlapping_list, dtype=torch.long)
def fill_all_templates_ensemble(x_=''):
res = []
for x in x_:
for template in VILD_PROMPT:
res.append(template.format(x))
return res, len(res) // len(VILD_PROMPT)
num_templates = []
templated_class_names = []
for x in class_names:
templated_classes, templated_classes_num = fill_all_templates_ensemble(x)
templated_class_names += templated_classes
num_templates.append(templated_classes_num) # how many templates for current classes
class_names = templated_class_names
#print("text for classification:", class_names)
return category_overlapping_mask, num_templates, class_names
def set_metadata(self, metadata):
self.test_metadata = metadata
self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(metadata, self.train_metadata)
self.test_text_classifier = None
return
def get_text_classifier(self, dataname):
if self.training:
os.makedirs("text_embedding", exist_ok=True)
out_path = f"./text_embedding/{dataname}_text_embedding.npy"
if dataname in self.train_text_classifier:
return self.train_text_classifier[dataname], self.train_num_templates[dataname]
if dataname not in self.train_num_templates:
_, self.train_num_templates[dataname], train_class_names = self.prepare_class_names_from_metadata(
self.train_metadata[dataname], self.train_metadata[dataname]
)
if os.path.exists(out_path):
text_classifier = torch.from_numpy(np.load(out_path)).to(self.device)
else:
text_classifier = []
bs = 128
for idx in range(0, len(train_class_names), bs):
text_classifier.append(
self.backbone.get_text_classifier(train_class_names[idx:idx+bs], self.device).detach()
)
text_classifier = torch.cat(text_classifier, dim=0)
text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
text_classifier = text_classifier.reshape(text_classifier.shape[0] // len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1)
text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
np.save(out_path, text_classifier.cpu().numpy())
self.train_text_classifier[dataname] = text_classifier
return self.train_text_classifier[dataname], self.train_num_templates[dataname]
else:
if self.test_dataname != dataname:
self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(
self.test_metadata[dataname], self.test_metadata[dataname]
)
text_classifier = []
bs = 128
for idx in range(0, len(self.test_class_names), bs):
text_classifier.append(
self.backbone.get_text_classifier(self.test_class_names[idx:idx+bs], self.device).detach()
)
text_classifier = torch.cat(text_classifier, dim=0)
text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
text_classifier = text_classifier.reshape(text_classifier.shape[0] // len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1)
text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
self.test_text_classifier = text_classifier
self.test_dataname = dataname
return self.test_text_classifier, self.test_num_templates
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
mask_adapter = build_mask_adapter(cfg, cfg.MODEL.MASK_ADAPTER.NAME)
# loss weights
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
# building criterion
weight_dict = {"loss_ce": class_weight}
losses = ["labels"]
train_metadata = {i: MetadataCatalog.get(i) for i in cfg.DATASETS.TRAIN}
test_metadata = {i: MetadataCatalog.get(i) for i in cfg.DATASETS.TEST}
return {
"backbone": backbone,
"mask_adapter": mask_adapter,
"weight_dict": weight_dict,
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
"mask_threshold": cfg.MODEL.MASK_ADAPTER.MASK_THRESHOLD,
"train_metadata": train_metadata,#MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
"test_metadata": test_metadata, # MetadataCatalog.get(cfg.DATASETS.TEST[0]),
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
"sem_seg_postprocess_before_inference": (
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
),
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
# inference
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
"train_maft": cfg.MODEL.MASK_ADAPTER.TRAIN_MAFT,
"num_output_maps": cfg.MODEL.MASK_ADAPTER.NUM_OUTPUT_MAPS
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
if self.train_maft and self.training :
dataname = "openvocab_coco_2017_train_stuff_sem_seg"
else:
dataname = batched_inputs[0]['dataname']
if self.training:
dataname_2 = batched_inputs[1]['dataname']
assert dataname == dataname_2, f"expect batch img from same dataset, but different from {dataname} and {dataname_2}"
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
features = self.backbone(images.tensor)
clip_feature = features['clip_vis_dense']
text_classifier, num_templates = self.get_text_classifier(dataname)
text_classifier = torch.cat([text_classifier, F.normalize(self.void_embedding.weight, dim=-1)], dim=0)
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
if self.train_maft:
#https://github.com/jiaosiyu1999/MAFT-Plus/blob/fd12806df651d309883229de9503e40533f92689/maft/maft_plus.py#L352
#For maftp,it uses a wrong reshape operation to get clip_vis_dense. Since we don't finetune cdt, we follow them.
img_feat = self.visual_prediction_forward_convnext(clip_feature)
text_classifier = self.cdt(img_feat, text_classifier)
clip_vis_dense = img_feat
else:
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
if self.training:
# mask classification target
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
targets,masks,labels = self.prepare_targets(gt_instances, images)
else:
targets = None
semantic_activation_maps = self.mask_adapter(clip_vis_dense, masks)
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
mode='bilinear', align_corners=False)
if "convnext" in self.backbone.model_name.lower():
B, C = clip_feature.size(0),clip_feature.size(1)
N = maps_for_pooling.size(1)
num_instances = N // self.num_output_maps
maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature)
pooled_clip_feature = (pooled_clip_feature.reshape(B,num_instances, self.num_output_maps, -1).mean(dim=-2).contiguous())
else:
raise NotImplementedError
mask_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates)
losses = self.cross_entropy_loss(mask_cls_results, labels)
for k in list(losses.keys()):
if k in self.weight_dict:
losses[k] *= self.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
losses.pop(k)
return losses
else:
masks = []
classes = []
for input_per_image in batched_inputs:
height = input_per_image.get("height")
width = input_per_image.get("width")
sem_seg = input_per_image["sem_seg"].to(self.device)
total_masks,class_label = self.sem_seg_2_gt_masks(sem_seg, height, width)
masks.append(total_masks)
classes.append(class_label)
masks = torch.stack(masks)
classes = torch.stack(classes)
outputs = self.mask_adapter(clip_vis_dense, masks)
maps_for_pooling = F.interpolate(outputs, size=clip_vis_dense.shape[-2:],
mode='bilinear', align_corners=False)
if "convnext" in self.backbone.model_name.lower():
B,C = clip_feature.size(0),clip_feature.size(1)
N = maps_for_pooling.size(1)
num_instances = N // self.num_output_maps
maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature)
pooled_clip_feature = (pooled_clip_feature.reshape(B,num_instances, self.num_output_maps, -1).mean(dim=-2).contiguous())
else:
raise NotImplementedError
mask_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates)
mask_cls_results = mask_cls_results.softmax(-1)
#upsample masks
mask_pred_results = F.interpolate(
masks,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
processed_results = []
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
if self.sem_seg_postprocess_before_inference:
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
mask_cls_result = mask_cls_result.to(mask_pred_result)
mask_pred_result = mask_pred_result.squeeze(1)
# semantic segmentation inference
if self.semantic_on:
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference:
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
processed_results[-1]["sem_seg"] = r
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
# instance segmentation inference
if self.instance_on:
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["instances"] = instance_r
return processed_results
def sem_seg_2_gt_masks(self, sem_seg, height, width):
classes = torch.unique(sem_seg,sorted=False,return_inverse=False,return_counts=False)
gt_labels = classes[classes != 255]
masks = [sem_seg == class_id for class_id in gt_labels]
if len(masks) == 0:
gt_masks = torch.zeros((0, sem_seg.shape[-2],
sem_seg.shape[-1])).to(sem_seg)
else:
gt_masks = torch.stack(masks).squeeze(1)
num_masks = gt_masks.shape[0]
total_masks = torch.zeros((num_masks, gt_masks.shape[1], gt_masks.shape[2]), dtype=gt_masks.dtype, device=gt_masks.device)
labels = torch.zeros((num_masks), device=gt_masks.device)
total_masks[:num_masks] = gt_masks[:num_masks]
labels[:num_masks] = gt_labels[:num_masks]
return total_masks.float(), labels
def visual_prediction_forward_convnext(self, x):
batch, channel, h, w = x.shape
x = x.reshape(batch*h*w, channel).unsqueeze(-1).unsqueeze(-1) # fake 2D input
x = self.backbone.clip_model.visual.trunk.head(x)
x = self.backbone.clip_model.visual.head(x)
return x.reshape(batch, h, w, x.shape[-1]).permute(0,3,1,2)
def visual_prediction_forward_convnext_2d(self, x):
clip_vis_dense = self.backbone.clip_model.visual.trunk.head.norm(x)
clip_vis_dense = self.backbone.clip_model.visual.trunk.head.drop(clip_vis_dense.permute(0, 2, 3, 1))
clip_vis_dense = self.backbone.clip_model.visual.head(clip_vis_dense).permute(0, 3, 1, 2)
return clip_vis_dense
def cross_entropy_loss(self, mask_cls_results, labels):
if torch.all(labels == -1):
loss_ce = mask_cls_results.sum() * 0.0
else:
loss_ce = F.cross_entropy(mask_cls_results.transpose(1, 2), labels.to(torch.int64), ignore_index=-1) #remove celoss weight because of multiple datasets training
losses = {"loss_ce": loss_ce}
return losses
def prepare_targets(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
masks_list = []
labels_list = []
num_masks = 32
min_mask_area = 0
for targets_per_image in targets:
gt_masks = targets_per_image.gt_masks
if isinstance(gt_masks, BitMasks):
gt_masks = gt_masks.tensor
valid_mask_indices = [i for i, mask in enumerate(gt_masks) if mask.sum() > min_mask_area]
if len(valid_mask_indices) > 0:
valid_gt_masks = gt_masks[valid_mask_indices]
valid_gt_classes = targets_per_image.gt_classes[valid_mask_indices]
padded_masks = torch.zeros((valid_gt_masks.shape[0], h_pad, w_pad), dtype=valid_gt_masks.dtype, device=valid_gt_masks.device)
padded_masks[:, : valid_gt_masks.shape[1], : valid_gt_masks.shape[2]] = valid_gt_masks
new_targets.append(
{
"labels": valid_gt_classes,
"masks": padded_masks,
}
)
total_masks = torch.zeros((num_masks, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
selected_labels = torch.zeros((num_masks), device=gt_masks.device)
if valid_gt_masks.shape[0] > num_masks:
selected_indices = torch.randperm(valid_gt_masks.shape[0])[:num_masks]
for idx, mask_idx in enumerate(selected_indices):
total_masks[idx, :valid_gt_masks[mask_idx].shape[0], :valid_gt_masks[mask_idx].shape[1]] = valid_gt_masks[mask_idx]
selected_labels[idx] = valid_gt_classes[mask_idx]
else:
for idx in range(valid_gt_masks.shape[0]):
total_masks[idx, :valid_gt_masks[idx].shape[0], :valid_gt_masks[idx].shape[1]] = valid_gt_masks[idx]
selected_labels[idx] = valid_gt_classes[idx]
for idx in range(valid_gt_masks.shape[0], num_masks):
total_masks[idx] = torch.zeros((h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
selected_labels[idx] = -1
else:
total_masks = torch.zeros((num_masks, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
selected_labels = torch.zeros((num_masks), device=gt_masks.device)
selected_labels.fill_(-1)
padded_masks = torch.zeros((0, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
valid_gt_classes = torch.zeros((0), device=gt_masks.device)
new_targets.append(
{
"labels": valid_gt_classes,
"masks": padded_masks,
}
)
masks_list.append(total_masks)
labels_list.append(selected_labels)
masks = torch.stack(masks_list, dim=0)
labels = torch.stack(labels_list, dim=0)
labels = labels.long()
return new_targets, masks, labels
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
if mask_pred.dim() == 4:
mask_pred = mask_pred.squeeze(dim=0)
#mask_pred = mask_pred.sigmoid() #remove because of gt masks
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
num_classes = len(self.test_metadata[self.test_dataname].stuff_classes)
keep = labels.ne(num_classes) & (scores > self.object_mask_threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
cur_mask_cls = mask_cls[keep]
cur_mask_cls = cur_mask_cls[:, :-1]
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
segments_info = []
current_segment_id = 0
if cur_masks.shape[0] == 0:
# We didn't detect any mask :(
return panoptic_seg, segments_info
else:
# take argmax
cur_mask_ids = cur_prob_masks.argmax(0)
stuff_memory_list = {}
for k in range(cur_classes.shape[0]):
pred_class = cur_classes[k].item()
isthing = pred_class in self.test_metadata[self.test_dataname].thing_dataset_id_to_contiguous_id.values()
mask_area = (cur_mask_ids == k).sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
if mask_area / original_area < self.overlap_threshold:
continue
# merge stuff regions
if not isthing:
if int(pred_class) in stuff_memory_list.keys():
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
continue
else:
stuff_memory_list[int(pred_class)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(isthing),
"category_id": int(pred_class),
}
)
return panoptic_seg, segments_info
def instance_inference(self, mask_cls, mask_pred):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
# [Q, K]
#scores = F.softmax(mask_cls, dim=-1)[:, :-1] #[250,150]
scores = mask_cls[:, :-1].sigmoid()
# if this is panoptic segmentation
if self.panoptic_on:
num_classes = len(self.test_metadata[self.test_dataname].stuff_classes)
else:
num_classes = len(self.test_metadata[self.test_dataname].thing_classes)
labels = torch.arange(num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = topk_indices // num_classes
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
mask_pred = mask_pred[topk_indices]
# if this is panoptic segmentation, we only keep the "thing" classes
if self.panoptic_on:
keep = torch.zeros_like(scores_per_image).bool()
for i, lab in enumerate(labels_per_image):
keep[i] = lab in self.test_metadata[self.test_dataname].thing_dataset_id_to_contiguous_id.values()
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = (mask_pred > self.mask_threshold).float()
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
# calculate average mask prob
mask_scores_per_image = (mask_pred.flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
return result
class MaskPooling(nn.Module):
def __init__(
self,mask_threshold
):
super().__init__()
self.mask_threshold = mask_threshold
def forward(self, x, mask):
"""
Args:
x: [B, C, H, W]
mask: [B, Q, H, W]
"""
if not x.shape[-2:] == mask.shape[-2:]:
# reshape mask to x
mask = F.interpolate(mask, size=x.shape[-2:], mode='bilinear', align_corners=False)
with torch.no_grad():
mask = mask.detach()
binary_mask = (mask > self.mask_threshold).to(mask.dtype)
mask = binary_mask * mask
denorm = mask.sum(dim=(-1, -2), keepdim=True) + 1e-8
mask_pooled_x = torch.einsum(
"bchw,bqhw->bqc",
x,
mask / denorm,
)
return mask_pooled_x
def get_classification_logits(x, text_classifier, logit_scale, num_templates=None):
# x in shape of [B, *, C]
# text_classifier in shape of [num_classes, C]
# logit_scale is a learnable scalar https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/model.py#L201
# return: [B, *, num_classes]
x = F.normalize(x, dim=-1)
logit_scale = torch.clamp(logit_scale.exp(), max=100)
if len(text_classifier.shape) == 2:
pred_logits = logit_scale * x @ text_classifier.T # B, *, N + 1
else:
pred_logits = logit_scale * x @ text_classifier.permute(0,2,1) # B, *, N + 1
# max ensembel as in OpenSeg/ODISE
if pred_logits.shape[2] != 1204 and pred_logits.shape[2] != 366:
final_pred_logits = []
cur_idx = 0
for num_t in num_templates:
final_pred_logits.append(pred_logits[:, :, cur_idx: cur_idx + num_t].max(-1).values)
cur_idx += num_t
final_pred_logits.append(pred_logits[:, :, -1]) # the last classifier is for void
final_pred_logits = torch.stack(final_pred_logits, dim=-1)
else:
final_pred_logits = pred_logits
return final_pred_logits |