File size: 34,777 Bytes
ba4c371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
"""
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. 

Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/maskformer_model.py
"""
from typing import Tuple
import os
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms as T
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom
from .modeling.maft.content_dependent_transfer import ContentDependentTransfer
from .modeling.meta_arch.mask_adapter_head import build_mask_adapter




VILD_PROMPT = [
    "a photo of a {}.",
    "This is a photo of a {}",
    "There is a {} in the scene",
    "There is the {} in the scene",
    "a photo of a {} in the scene",
    "a photo of a small {}.",
    "a photo of a medium {}.",
    "a photo of a large {}.",
    "This is a photo of a small {}.",
    "This is a photo of a medium {}.",
    "This is a photo of a large {}.",
    "There is a small {} in the scene.",
    "There is a medium {} in the scene.",
    "There is a large {} in the scene.",
]

@META_ARCH_REGISTRY.register()
class MASK_Adapter(nn.Module):
    """
    Main class for mask classification semantic segmentation architectures.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        mask_adapter: nn.Module,
        weight_dict,
        num_queries: int,
        object_mask_threshold: float,
        overlap_threshold: float,
        mask_threshold: float,
        train_metadata,
        test_metadata,
        size_divisibility: int,
        sem_seg_postprocess_before_inference: bool,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        # inference
        semantic_on: bool,
        panoptic_on: bool,
        instance_on: bool,
        test_topk_per_image: int,
        train_maft : bool,
        num_output_maps: int,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            mask_adapter: mask-adapter extract semantic activation maps from masks
            weight_dict: dict contains weight for each loss
            num_queries: int, number of queries
            object_mask_threshold: float, threshold to filter query based on classification score
                for panoptic segmentation inference
            overlap_threshold: overlap threshold used in general inference for panoptic segmentation
            metadata: dataset meta, get `thing` and `stuff` category names for panoptic
                segmentation inference
            size_divisibility: Some backbones require the input height and width to be divisible by a
                specific integer. We can use this to override such requirement.
            sem_seg_postprocess_before_inference: whether to resize the prediction back
                to original input size before semantic segmentation inference or after.
                For high-resolution dataset like Mapillary, resizing predictions before
                inference will cause OOM error.
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            semantic_on: bool, whether to output semantic segmentation prediction
            instance_on: bool, whether to output instance segmentation prediction
            panoptic_on: bool, whether to output panoptic segmentation prediction
            test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
        """
        super().__init__()
        self.backbone = backbone
        self.mask_adapter = mask_adapter
        self.weight_dict = weight_dict
        self.num_queries = num_queries
        self.overlap_threshold = overlap_threshold
        self.object_mask_threshold = object_mask_threshold
        self.mask_threshold = mask_threshold
        self.train_metadata = train_metadata
        self.test_metadata = test_metadata
        if size_divisibility < 0:
            # use backbone size_divisibility if not set
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility
        self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

        # additional args
        self.semantic_on = semantic_on
        self.instance_on = instance_on
        self.panoptic_on = panoptic_on
        self.test_topk_per_image = test_topk_per_image

        if not self.semantic_on:
            assert self.sem_seg_postprocess_before_inference
                
        self.void_embedding = nn.Embedding(1, backbone.dim_latent)
        self.train_dataname = None
        self.test_dataname = None
        self.train_num_templates = {}
        self.train_text_classifier = {}
        self.train_maft = train_maft
        self.num_output_maps = num_output_maps
        
        if self.train_maft:
            if '_base' in backbone.model_name.lower():
                cdt_params = [640, 8]
            elif '_large' in backbone.model_name.lower():
                cdt_params = [768, 8]
            self.cdt = ContentDependentTransfer(d_model = cdt_params[0], nhead = cdt_params[1], panoptic_on = panoptic_on)
            self.freeze_cdt()
                       
    def freeze_cdt(self):
        for param in self.cdt.parameters():
            param.requires_grad = False

    #https://github.com/bytedance/fc-clip/blob/2b0bbe213070d44da9182530fa2e826fef03f974/fcclip/fcclip.py#L139
    def prepare_class_names_from_metadata(self, metadata, train_metadata):
        def split_labels(x):
            res = []
            for x_ in x:
                x_ = x_.replace(', ', ',')
                x_ = x_.split(',') # there can be multiple synonyms for single class
                res.append(x_)
            return res
        # get text classifier
        try:
            class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff
            train_class_names = split_labels(train_metadata.stuff_classes)
        except:
            # this could be for insseg, where only thing_classes are available
            class_names = split_labels(metadata.thing_classes)
            train_class_names = split_labels(train_metadata.thing_classes)
        train_class_names = {l for label in train_class_names for l in label}
        category_overlapping_list = []
        for test_class_names in class_names:
            is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names))
            category_overlapping_list.append(is_overlapping)
        category_overlapping_mask = torch.tensor(
            category_overlapping_list, dtype=torch.long)
        
        def fill_all_templates_ensemble(x_=''):
            res = []
            for x in x_:
                for template in VILD_PROMPT:
                    res.append(template.format(x))
            return res, len(res) // len(VILD_PROMPT)
       
        num_templates = []
        templated_class_names = []
        for x in class_names:
            templated_classes, templated_classes_num = fill_all_templates_ensemble(x)
            templated_class_names += templated_classes
            num_templates.append(templated_classes_num) # how many templates for current classes
        class_names = templated_class_names
        #print("text for classification:", class_names)
        return category_overlapping_mask, num_templates, class_names

    def set_metadata(self, metadata):
        self.test_metadata = metadata
        self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(metadata, self.train_metadata)
        self.test_text_classifier = None
        return

    def get_text_classifier(self, dataname):
        
        if self.training:
            os.makedirs("text_embedding", exist_ok=True) 
            out_path = f"./text_embedding/{dataname}_text_embedding.npy"
            if dataname in self.train_text_classifier:
                return self.train_text_classifier[dataname], self.train_num_templates[dataname]
            
            if dataname not in self.train_num_templates:
                _, self.train_num_templates[dataname], train_class_names = self.prepare_class_names_from_metadata(
                    self.train_metadata[dataname], self.train_metadata[dataname]
                )
            
            if os.path.exists(out_path):
                text_classifier = torch.from_numpy(np.load(out_path)).to(self.device)
            else:
                text_classifier = []
                bs = 128

                for idx in range(0, len(train_class_names), bs):
                    text_classifier.append(
                        self.backbone.get_text_classifier(train_class_names[idx:idx+bs], self.device).detach()
                    )
                text_classifier = torch.cat(text_classifier, dim=0)

                text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
                text_classifier = text_classifier.reshape(text_classifier.shape[0] // len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1)
                text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
                
                np.save(out_path, text_classifier.cpu().numpy())
            
            self.train_text_classifier[dataname] = text_classifier
            return self.train_text_classifier[dataname], self.train_num_templates[dataname]
        else:
            if self.test_dataname != dataname:
                self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(
                    self.test_metadata[dataname], self.test_metadata[dataname]
                )
                text_classifier = []
                bs = 128
                for idx in range(0, len(self.test_class_names), bs):
                    text_classifier.append(
                        self.backbone.get_text_classifier(self.test_class_names[idx:idx+bs], self.device).detach()
                    )
                text_classifier = torch.cat(text_classifier, dim=0)

                text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
                text_classifier = text_classifier.reshape(text_classifier.shape[0] // len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1)
                text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
                self.test_text_classifier = text_classifier
                self.test_dataname = dataname
                
            return self.test_text_classifier, self.test_num_templates

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        mask_adapter = build_mask_adapter(cfg, cfg.MODEL.MASK_ADAPTER.NAME)

        # loss weights
        class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT

        # building criterion
        weight_dict = {"loss_ce": class_weight}

        losses = ["labels"]

        train_metadata = {i: MetadataCatalog.get(i) for i in cfg.DATASETS.TRAIN}
        test_metadata = {i: MetadataCatalog.get(i) for i in cfg.DATASETS.TEST}

        return {
            "backbone": backbone,
            "mask_adapter": mask_adapter,
            "weight_dict": weight_dict,
            "num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
            "object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
            "overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
            "mask_threshold": cfg.MODEL.MASK_ADAPTER.MASK_THRESHOLD,
            "train_metadata": train_metadata,#MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
            "test_metadata": test_metadata, # MetadataCatalog.get(cfg.DATASETS.TEST[0]),
            "size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
            "sem_seg_postprocess_before_inference": (
                cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
                or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
                or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
            ),
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            # inference
            "semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
            "instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
            "panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
            "test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
            "train_maft": cfg.MODEL.MASK_ADAPTER.TRAIN_MAFT,
            "num_output_maps": cfg.MODEL.MASK_ADAPTER.NUM_OUTPUT_MAPS
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
                * "panoptic_seg":
                    A tuple that represent panoptic output
                    panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
                    segments_info (list[dict]): Describe each segment in `panoptic_seg`.
                        Each dict contains keys "id", "category_id", "isthing".
        """
        if self.train_maft and self.training :
            dataname = "openvocab_coco_2017_train_stuff_sem_seg"
        else:
            dataname = batched_inputs[0]['dataname']
            if self.training:
                dataname_2 = batched_inputs[1]['dataname']
                assert dataname == dataname_2, f"expect batch img from same dataset, but different from {dataname} and {dataname_2}"

        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        features = self.backbone(images.tensor)
        
        clip_feature = features['clip_vis_dense']
        text_classifier, num_templates = self.get_text_classifier(dataname)
        
        text_classifier = torch.cat([text_classifier, F.normalize(self.void_embedding.weight, dim=-1)], dim=0)
        
        clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
        
        if self.train_maft:
            #https://github.com/jiaosiyu1999/MAFT-Plus/blob/fd12806df651d309883229de9503e40533f92689/maft/maft_plus.py#L352
            #For maftp,it uses a wrong reshape operation to get clip_vis_dense. Since we don't finetune cdt, we follow them. 
            img_feat = self.visual_prediction_forward_convnext(clip_feature)
            text_classifier = self.cdt(img_feat, text_classifier)
            clip_vis_dense = img_feat
        else:
            clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
            
        if self.training:
            # mask classification target
            if "instances" in batched_inputs[0]:
                gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
                targets,masks,labels = self.prepare_targets(gt_instances, images)
            else:
                targets = None            

            semantic_activation_maps = self.mask_adapter(clip_vis_dense, masks)
                
            maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
                                                mode='bilinear', align_corners=False)
            if "convnext" in self.backbone.model_name.lower():
                B, C = clip_feature.size(0),clip_feature.size(1)
                N = maps_for_pooling.size(1)
                num_instances = N // self.num_output_maps
                maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
                pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
                pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature)
                pooled_clip_feature = (pooled_clip_feature.reshape(B,num_instances, self.num_output_maps, -1).mean(dim=-2).contiguous())
            else:
                raise NotImplementedError
                        
            mask_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates)

            losses = self.cross_entropy_loss(mask_cls_results, labels)
            
            for k in list(losses.keys()):
                if k in self.weight_dict:
                    losses[k] *= self.weight_dict[k]
                else:
                    # remove this loss if not specified in `weight_dict`
                    losses.pop(k)
            return losses
        else:          
            masks = []
            classes = []
            for input_per_image in batched_inputs:
                height = input_per_image.get("height")
                width = input_per_image.get("width")
                sem_seg = input_per_image["sem_seg"].to(self.device)
                total_masks,class_label = self.sem_seg_2_gt_masks(sem_seg, height, width)
                masks.append(total_masks)
                classes.append(class_label)
            masks = torch.stack(masks)            
            classes =  torch.stack(classes)
                        
            outputs = self.mask_adapter(clip_vis_dense, masks)
            
            maps_for_pooling = F.interpolate(outputs, size=clip_vis_dense.shape[-2:],
                                                mode='bilinear', align_corners=False)
            if "convnext" in self.backbone.model_name.lower():
                B,C = clip_feature.size(0),clip_feature.size(1)
                N = maps_for_pooling.size(1)
                num_instances = N // self.num_output_maps
                maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
                pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
                pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature)
                pooled_clip_feature = (pooled_clip_feature.reshape(B,num_instances, self.num_output_maps, -1).mean(dim=-2).contiguous())
            else:
                raise NotImplementedError
            
            mask_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates)

            mask_cls_results = mask_cls_results.softmax(-1)

            #upsample masks
            mask_pred_results = F.interpolate(
                masks,
                size=(images.tensor.shape[-2], images.tensor.shape[-1]),
                mode="bilinear",
                align_corners=False,
            )

            processed_results = []
            for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
                mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
            ):  
                
                height = input_per_image.get("height", image_size[0])
                width = input_per_image.get("width", image_size[1])
                processed_results.append({})
                
                if self.sem_seg_postprocess_before_inference:
                    mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
                        mask_pred_result, image_size, height, width
                    )
                    mask_cls_result = mask_cls_result.to(mask_pred_result)
                    
                mask_pred_result = mask_pred_result.squeeze(1)
                # semantic segmentation inference
                if self.semantic_on:
                    r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
                    if not self.sem_seg_postprocess_before_inference:
                        r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
                    processed_results[-1]["sem_seg"] = r

                # panoptic segmentation inference
                if self.panoptic_on:
                    panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
                    processed_results[-1]["panoptic_seg"] = panoptic_r
                
                # instance segmentation inference
                if self.instance_on:
                    instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result)
                    processed_results[-1]["instances"] = instance_r

            return processed_results

    def sem_seg_2_gt_masks(self, sem_seg, height, width):
        classes = torch.unique(sem_seg,sorted=False,return_inverse=False,return_counts=False)
        gt_labels = classes[classes != 255]
        masks = [sem_seg == class_id for class_id in gt_labels]

        if len(masks) == 0:
            gt_masks = torch.zeros((0, sem_seg.shape[-2],
                                            sem_seg.shape[-1])).to(sem_seg)
        else:
            gt_masks = torch.stack(masks).squeeze(1)
            
        num_masks = gt_masks.shape[0]
        total_masks = torch.zeros((num_masks, gt_masks.shape[1], gt_masks.shape[2]), dtype=gt_masks.dtype, device=gt_masks.device)
        labels = torch.zeros((num_masks), device=gt_masks.device)
        
        total_masks[:num_masks] = gt_masks[:num_masks]
        labels[:num_masks] = gt_labels[:num_masks]
        
        return total_masks.float(), labels
    
    def visual_prediction_forward_convnext(self, x):
        batch, channel, h, w = x.shape
        
        x = x.reshape(batch*h*w, channel).unsqueeze(-1).unsqueeze(-1) # fake 2D input
        
        x = self.backbone.clip_model.visual.trunk.head(x)
        
        x = self.backbone.clip_model.visual.head(x)
        
        return x.reshape(batch, h, w, x.shape[-1]).permute(0,3,1,2) 
    
    def visual_prediction_forward_convnext_2d(self, x):
        
        clip_vis_dense = self.backbone.clip_model.visual.trunk.head.norm(x)
        clip_vis_dense = self.backbone.clip_model.visual.trunk.head.drop(clip_vis_dense.permute(0, 2, 3, 1))
        clip_vis_dense = self.backbone.clip_model.visual.head(clip_vis_dense).permute(0, 3, 1, 2)
        
        return clip_vis_dense
    
    def cross_entropy_loss(self, mask_cls_results, labels):
        
        if torch.all(labels == -1):
            loss_ce = mask_cls_results.sum() * 0.0 
        else:
            loss_ce = F.cross_entropy(mask_cls_results.transpose(1, 2), labels.to(torch.int64), ignore_index=-1)  #remove celoss weight because of multiple datasets training

        losses = {"loss_ce": loss_ce}
        return losses
    
    def prepare_targets(self, targets, images):
        h_pad, w_pad = images.tensor.shape[-2:]
        new_targets = []
        masks_list = []
        labels_list = []

        num_masks = 32  
        min_mask_area = 0
        
        for targets_per_image in targets:
            gt_masks = targets_per_image.gt_masks
            if isinstance(gt_masks, BitMasks):
                gt_masks = gt_masks.tensor
            valid_mask_indices = [i for i, mask in enumerate(gt_masks) if mask.sum() > min_mask_area]  

            if len(valid_mask_indices) > 0:
                valid_gt_masks = gt_masks[valid_mask_indices]
                valid_gt_classes = targets_per_image.gt_classes[valid_mask_indices]
                
                padded_masks = torch.zeros((valid_gt_masks.shape[0], h_pad, w_pad), dtype=valid_gt_masks.dtype, device=valid_gt_masks.device)
                padded_masks[:, : valid_gt_masks.shape[1], : valid_gt_masks.shape[2]] = valid_gt_masks
                new_targets.append(
                    {
                        "labels": valid_gt_classes,
                        "masks": padded_masks,
                    }
                )

                total_masks = torch.zeros((num_masks, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
                selected_labels = torch.zeros((num_masks), device=gt_masks.device)

                if valid_gt_masks.shape[0] > num_masks:
                    selected_indices = torch.randperm(valid_gt_masks.shape[0])[:num_masks]
                    for idx, mask_idx in enumerate(selected_indices):
                        total_masks[idx, :valid_gt_masks[mask_idx].shape[0], :valid_gt_masks[mask_idx].shape[1]] = valid_gt_masks[mask_idx]
                        selected_labels[idx] = valid_gt_classes[mask_idx]
                else:
                    for idx in range(valid_gt_masks.shape[0]):
                        total_masks[idx, :valid_gt_masks[idx].shape[0], :valid_gt_masks[idx].shape[1]] = valid_gt_masks[idx]
                        selected_labels[idx] = valid_gt_classes[idx]
                    
                    for idx in range(valid_gt_masks.shape[0], num_masks):
                        total_masks[idx] = torch.zeros((h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
                        selected_labels[idx] = -1
            else:
                total_masks = torch.zeros((num_masks, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
                selected_labels = torch.zeros((num_masks), device=gt_masks.device)
                selected_labels.fill_(-1)  
                
                padded_masks = torch.zeros((0, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
                valid_gt_classes = torch.zeros((0), device=gt_masks.device)
                new_targets.append(
                    {
                        "labels": valid_gt_classes,
                        "masks": padded_masks,
                    }
                )

            masks_list.append(total_masks)
            labels_list.append(selected_labels)

        masks = torch.stack(masks_list, dim=0)
        labels = torch.stack(labels_list, dim=0)
        labels = labels.long()

        return new_targets, masks, labels

    def semantic_inference(self, mask_cls, mask_pred):  

        mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
        if mask_pred.dim() == 4:
            mask_pred = mask_pred.squeeze(dim=0)
        #mask_pred = mask_pred.sigmoid() #remove because of gt masks
        semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
        return semseg

    def panoptic_inference(self, mask_cls, mask_pred):

                
        scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
        num_classes = len(self.test_metadata[self.test_dataname].stuff_classes)
        keep = labels.ne(num_classes) & (scores > self.object_mask_threshold)
        cur_scores = scores[keep]
        cur_classes = labels[keep]
        cur_masks = mask_pred[keep]
        cur_mask_cls = mask_cls[keep]
        cur_mask_cls = cur_mask_cls[:, :-1]

        cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks

        h, w = cur_masks.shape[-2:]
        panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
        segments_info = []

        current_segment_id = 0

        if cur_masks.shape[0] == 0:
            # We didn't detect any mask :(
            return panoptic_seg, segments_info
        else:
            # take argmax
            cur_mask_ids = cur_prob_masks.argmax(0)
            stuff_memory_list = {}
            for k in range(cur_classes.shape[0]):
                pred_class = cur_classes[k].item()
                isthing = pred_class in self.test_metadata[self.test_dataname].thing_dataset_id_to_contiguous_id.values()
                mask_area = (cur_mask_ids == k).sum().item()
                original_area = (cur_masks[k] >= 0.5).sum().item()
                mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)

                if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
                    if mask_area / original_area < self.overlap_threshold:
                        continue

                    # merge stuff regions
                    if not isthing:
                        if int(pred_class) in stuff_memory_list.keys():
                            panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
                            continue
                        else:
                            stuff_memory_list[int(pred_class)] = current_segment_id + 1

                    current_segment_id += 1
                    panoptic_seg[mask] = current_segment_id

                    segments_info.append(
                        {
                            "id": current_segment_id,
                            "isthing": bool(isthing),
                            "category_id": int(pred_class),
                        }
                    )

            return panoptic_seg, segments_info

    def instance_inference(self, mask_cls, mask_pred):
        # mask_pred is already processed to have the same shape as original input

        image_size = mask_pred.shape[-2:]

        # [Q, K]
        #scores = F.softmax(mask_cls, dim=-1)[:, :-1]  #[250,150]
        scores = mask_cls[:, :-1].sigmoid()
        # if this is panoptic segmentation
        if self.panoptic_on:
            num_classes = len(self.test_metadata[self.test_dataname].stuff_classes)
        else:
            num_classes = len(self.test_metadata[self.test_dataname].thing_classes)
        labels = torch.arange(num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
        # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
        scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
        labels_per_image = labels[topk_indices]

        topk_indices = topk_indices // num_classes
        # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
        mask_pred = mask_pred[topk_indices]

        # if this is panoptic segmentation, we only keep the "thing" classes
        if self.panoptic_on:
            keep = torch.zeros_like(scores_per_image).bool()
            for i, lab in enumerate(labels_per_image):
                keep[i] = lab in self.test_metadata[self.test_dataname].thing_dataset_id_to_contiguous_id.values()

            scores_per_image = scores_per_image[keep]
            labels_per_image = labels_per_image[keep]
            mask_pred = mask_pred[keep]

        result = Instances(image_size)
        # mask (before sigmoid)
        result.pred_masks = (mask_pred > self.mask_threshold).float()
        result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
        # Uncomment the following to get boxes from masks (this is slow)
        # result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()

        # calculate average mask prob
        mask_scores_per_image = (mask_pred.flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
        result.scores = scores_per_image * mask_scores_per_image
        result.pred_classes = labels_per_image
        return result

class MaskPooling(nn.Module):
    def __init__(
        self,mask_threshold
    ):
        super().__init__()
        self.mask_threshold = mask_threshold

    def forward(self, x, mask):
        """
        Args:
            x: [B, C, H, W]
            mask: [B, Q, H, W]
        """
        if not x.shape[-2:] == mask.shape[-2:]:
            # reshape mask to x
            mask = F.interpolate(mask, size=x.shape[-2:], mode='bilinear', align_corners=False)
        with torch.no_grad():
            mask = mask.detach()
            binary_mask = (mask > self.mask_threshold).to(mask.dtype)
            mask = binary_mask * mask
            denorm = mask.sum(dim=(-1, -2), keepdim=True) + 1e-8

        mask_pooled_x = torch.einsum(
            "bchw,bqhw->bqc",
            x,
            mask / denorm,
        )
        return mask_pooled_x
    
def get_classification_logits(x, text_classifier, logit_scale, num_templates=None):
    # x in shape of [B, *, C]
    # text_classifier in shape of [num_classes, C]
    # logit_scale is a learnable scalar https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/model.py#L201
    # return: [B, *, num_classes]
    x = F.normalize(x, dim=-1)
    logit_scale = torch.clamp(logit_scale.exp(), max=100)
    if len(text_classifier.shape) == 2:
        pred_logits = logit_scale * x @ text_classifier.T # B, *, N + 1
    else:
        pred_logits = logit_scale * x @ text_classifier.permute(0,2,1) # B, *, N + 1
    # max ensembel as in OpenSeg/ODISE
    if pred_logits.shape[2] != 1204 and pred_logits.shape[2] != 366:
        final_pred_logits = []
        cur_idx = 0
        for num_t in num_templates: 
            final_pred_logits.append(pred_logits[:, :, cur_idx: cur_idx + num_t].max(-1).values)
            cur_idx += num_t
        final_pred_logits.append(pred_logits[:, :, -1]) # the last classifier is for void
        final_pred_logits = torch.stack(final_pred_logits, dim=-1)
    else:
        final_pred_logits = pred_logits
    return final_pred_logits