File size: 7,880 Bytes
f773839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import multiprocessing as mp
import numpy as np
from PIL import Image
import torch
try:
    import detectron2
except:
    import os
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')

from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from mask_adapter import add_maskformer2_config, add_fcclip_config, add_mask_adapter_config
from mask_adapter.sam_maskadapter import SAMVisualizationDemo, SAMPointVisualizationDemo
import gradio as gr
import gdown
import open_clip
from sam2.build_sam import build_sam2
from mask_adapter.modeling.meta_arch.mask_adapter_head import build_mask_adapter

# ckpt_url = 'https://drive.google.com/uc?id=1cn-ohxgXDrDfkzC1QdO-fi8IjbjXmgKy'
# output = './ovseg_swinbase_vitL14_ft_mpt.pth'
# gdown.download(ckpt_url, output, quiet=False)


def setup_cfg(config_file):
    # load config from file and command-line arguments
    cfg = get_cfg()
    add_deeplab_config(cfg)
    add_maskformer2_config(cfg)
    add_fcclip_config(cfg)
    add_mask_adapter_config(cfg)
    cfg.merge_from_file(config_file)
    cfg.freeze()
    return cfg


def inference_automatic(input_img, class_names):
    mp.set_start_method("spawn", force=True)
    config_file = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
    cfg = setup_cfg(config_file)
    
    demo = SAMVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
    
    class_names = class_names.split(',')
    img = read_image(input_img, format="BGR")
    _, visualized_output = demo.run_on_image(img, class_names)

    return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')


def inference_point(input_img, evt: gr.SelectData,):
    # In point mode, implement the logic to process points from the user click (x, y)
    # You can adjust your segmentation logic based on clicked points.
    x, y = evt.index[0], evt.index[1]
    points = [[x, y]]  # 假设只选择一个点作为输入
    print(f"Selected point: {points}")
    import time
    start_time = time.time()
    mp.set_start_method("spawn", force=True)
    config_file = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
    cfg = setup_cfg(config_file)
    
    demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
    end_time = time.time()
    print("init time",end_time - start_time)
    
    start_time = time.time()
    img = read_image(input_img, format="BGR")
    
    # Assume 'points' is a list of (x, y) coordinates to specify where the user clicks
    # Process the image and points to create a segmentation map accordingly
    _, visualized_output = demo.run_on_image_with_points(img, points)
    end_time = time.time()
    print("inf time",end_time - start_time)
    return visualized_output


sam2_model = None
clip_model = None
mask_adapter = None

# 加载和初始化函数
def initialize_models(sam_path, adapter_pth, model_cfg, cfg):
    cfg = setup_cfg(cfg)
    global sam2_model, clip_model, mask_adapter

    # SAM2初始化
    if sam2_model is None:
        sam2_model = build_sam2(model_cfg, sam_path, device="cuda", apply_postprocessing=False)
        print("SAM2 model initialized.")
    
    # CLIP模型初始化
    if clip_model is None:
        clip_model, _, _ = open_clip.create_model_and_transforms("convnext_large_d_320", pretrained="laion2b_s29b_b131k_ft_soup")
        print("CLIP model initialized.")
    
    # Mask Adapter模型初始化
    if mask_adapter is None:
        mask_adapter = build_mask_adapter(cfg, "MASKAdapterHead").cuda()
        # 加载Adapter状态字典
        adapter_state_dict = torch.load(adapter_pth)
        adapter_state_dict = {k.replace('mask_adapter.', '').replace('adapter.', ''): v 
                              for k, v in adapter_state_dict["model"].items() 
                              if k.startswith('adapter') or k.startswith('mask_adapter')}
        mask_adapter.load_state_dict(adapter_state_dict)
        print("Mask Adapter model initialized.")

# 初始化配置和模型
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam_path = '/home/yongkangli/segment-anything-2/checkpoints/sam2.1_hiera_large.pt'
adapter_pth = './model_0279999_with_sem_new.pth'
cfg = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'

# 调用初始化函数
initialize_models(sam_path, adapter_pth, model_cfg, cfg)

# Examples for testing
examples = [
    ['./demo/images/000000001025.jpg', 'dog, beach, trees, sea, sky, snow, person, rocks, buildings, birds, beach umbrella, beach chair'],
    ['./demo/images/ADE_val_00000979.jpg', 'sky,sea,mountain,pier,beach,island,,landscape,horizon'],
    ['./demo/images/ADE_val_00001200.jpg', 'bridge, mountains, trees, water, sky, buildings, boats, animals, flowers, waterfalls, grasslands, rocks'],
]

output_labels = ['segmentation map']

title = '<center><h2>Mask-Adapter + Segment Anything-2</h2></center>'

description = """
<b>Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation</b><br>
Mask-Adapter effectively extends to SAM or SAM-2 without additional training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.<br>
<div style="display: flex; gap: 20px;">
    <a href="https://arxiv.org/abs/2406.20076">
        <img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv Paper">
    </a>
    <a href="https://github.com/hustvl/MaskAdapter">
        <img src="https://img.shields.io/badge/GitHub-Code-blue" alt="GitHub Code">
    </a>
</div>
"""

# Interface with mode selection using Tabs
with gr.Blocks() as demo:
    gr.Markdown(title)  # Title
    gr.Markdown(description)  # Description

    with gr.Tabs():
        with gr.TabItem("Automatic Mode"):
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(type='filepath', label="Input Image")
                    class_names = gr.Textbox(lines=1, placeholder=None, label='Class Names')
                with gr.Column():
                    output_image = gr.Image(type="pil", label='Segmentation Map')

                    # Buttons below segmentation map (now placed under segmentation map)
                    run_button = gr.Button("Run Automatic Segmentation")
                    run_button.click(inference_automatic, inputs=[input_image, class_names], outputs=output_image)
                    
                    clear_button = gr.Button("Clear")
                    clear_button.click(lambda: None, inputs=None, outputs=output_image)
            
            with gr.Row():
                gr.Examples(examples=examples, inputs=[input_image, class_names], outputs=output_image)

        with gr.TabItem("Point Mode"):
            with gr.Row():  # 水平排列
                with gr.Column(): 
                    input_image = gr.Image(type='filepath', label="Upload Image", interactive=True)  # 上传图片并允许交互
                    points_input = gr.State(value=[])  # 用于存储点击的点

                with gr.Column():  # 第二列:分割图输出
                    output_image_point = gr.Image(type="pil", label='Segmentation Map')  # 输出分割图

            # 直接使用 `SelectData` 事件触发 `inference_point`
            input_image.select(inference_point, inputs=[input_image], outputs=output_image_point)

            # 清除分割图的按钮
            clear_button_point = gr.Button("Clear Segmentation Map")
            clear_button_point.click(lambda: None, inputs=None, outputs=output_image_point)
        


            
    # Example images below buttons

    demo.launch()