Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,880 Bytes
f773839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import multiprocessing as mp
import numpy as np
from PIL import Image
import torch
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from mask_adapter import add_maskformer2_config, add_fcclip_config, add_mask_adapter_config
from mask_adapter.sam_maskadapter import SAMVisualizationDemo, SAMPointVisualizationDemo
import gradio as gr
import gdown
import open_clip
from sam2.build_sam import build_sam2
from mask_adapter.modeling.meta_arch.mask_adapter_head import build_mask_adapter
# ckpt_url = 'https://drive.google.com/uc?id=1cn-ohxgXDrDfkzC1QdO-fi8IjbjXmgKy'
# output = './ovseg_swinbase_vitL14_ft_mpt.pth'
# gdown.download(ckpt_url, output, quiet=False)
def setup_cfg(config_file):
# load config from file and command-line arguments
cfg = get_cfg()
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
add_fcclip_config(cfg)
add_mask_adapter_config(cfg)
cfg.merge_from_file(config_file)
cfg.freeze()
return cfg
def inference_automatic(input_img, class_names):
mp.set_start_method("spawn", force=True)
config_file = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
class_names = class_names.split(',')
img = read_image(input_img, format="BGR")
_, visualized_output = demo.run_on_image(img, class_names)
return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
def inference_point(input_img, evt: gr.SelectData,):
# In point mode, implement the logic to process points from the user click (x, y)
# You can adjust your segmentation logic based on clicked points.
x, y = evt.index[0], evt.index[1]
points = [[x, y]] # 假设只选择一个点作为输入
print(f"Selected point: {points}")
import time
start_time = time.time()
mp.set_start_method("spawn", force=True)
config_file = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
end_time = time.time()
print("init time",end_time - start_time)
start_time = time.time()
img = read_image(input_img, format="BGR")
# Assume 'points' is a list of (x, y) coordinates to specify where the user clicks
# Process the image and points to create a segmentation map accordingly
_, visualized_output = demo.run_on_image_with_points(img, points)
end_time = time.time()
print("inf time",end_time - start_time)
return visualized_output
sam2_model = None
clip_model = None
mask_adapter = None
# 加载和初始化函数
def initialize_models(sam_path, adapter_pth, model_cfg, cfg):
cfg = setup_cfg(cfg)
global sam2_model, clip_model, mask_adapter
# SAM2初始化
if sam2_model is None:
sam2_model = build_sam2(model_cfg, sam_path, device="cuda", apply_postprocessing=False)
print("SAM2 model initialized.")
# CLIP模型初始化
if clip_model is None:
clip_model, _, _ = open_clip.create_model_and_transforms("convnext_large_d_320", pretrained="laion2b_s29b_b131k_ft_soup")
print("CLIP model initialized.")
# Mask Adapter模型初始化
if mask_adapter is None:
mask_adapter = build_mask_adapter(cfg, "MASKAdapterHead").cuda()
# 加载Adapter状态字典
adapter_state_dict = torch.load(adapter_pth)
adapter_state_dict = {k.replace('mask_adapter.', '').replace('adapter.', ''): v
for k, v in adapter_state_dict["model"].items()
if k.startswith('adapter') or k.startswith('mask_adapter')}
mask_adapter.load_state_dict(adapter_state_dict)
print("Mask Adapter model initialized.")
# 初始化配置和模型
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam_path = '/home/yongkangli/segment-anything-2/checkpoints/sam2.1_hiera_large.pt'
adapter_pth = './model_0279999_with_sem_new.pth'
cfg = '/home/yongkangli/Mask-Adapter/configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
# 调用初始化函数
initialize_models(sam_path, adapter_pth, model_cfg, cfg)
# Examples for testing
examples = [
['./demo/images/000000001025.jpg', 'dog, beach, trees, sea, sky, snow, person, rocks, buildings, birds, beach umbrella, beach chair'],
['./demo/images/ADE_val_00000979.jpg', 'sky,sea,mountain,pier,beach,island,,landscape,horizon'],
['./demo/images/ADE_val_00001200.jpg', 'bridge, mountains, trees, water, sky, buildings, boats, animals, flowers, waterfalls, grasslands, rocks'],
]
output_labels = ['segmentation map']
title = '<center><h2>Mask-Adapter + Segment Anything-2</h2></center>'
description = """
<b>Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation</b><br>
Mask-Adapter effectively extends to SAM or SAM-2 without additional training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.<br>
<div style="display: flex; gap: 20px;">
<a href="https://arxiv.org/abs/2406.20076">
<img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv Paper">
</a>
<a href="https://github.com/hustvl/MaskAdapter">
<img src="https://img.shields.io/badge/GitHub-Code-blue" alt="GitHub Code">
</a>
</div>
"""
# Interface with mode selection using Tabs
with gr.Blocks() as demo:
gr.Markdown(title) # Title
gr.Markdown(description) # Description
with gr.Tabs():
with gr.TabItem("Automatic Mode"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type='filepath', label="Input Image")
class_names = gr.Textbox(lines=1, placeholder=None, label='Class Names')
with gr.Column():
output_image = gr.Image(type="pil", label='Segmentation Map')
# Buttons below segmentation map (now placed under segmentation map)
run_button = gr.Button("Run Automatic Segmentation")
run_button.click(inference_automatic, inputs=[input_image, class_names], outputs=output_image)
clear_button = gr.Button("Clear")
clear_button.click(lambda: None, inputs=None, outputs=output_image)
with gr.Row():
gr.Examples(examples=examples, inputs=[input_image, class_names], outputs=output_image)
with gr.TabItem("Point Mode"):
with gr.Row(): # 水平排列
with gr.Column():
input_image = gr.Image(type='filepath', label="Upload Image", interactive=True) # 上传图片并允许交互
points_input = gr.State(value=[]) # 用于存储点击的点
with gr.Column(): # 第二列:分割图输出
output_image_point = gr.Image(type="pil", label='Segmentation Map') # 输出分割图
# 直接使用 `SelectData` 事件触发 `inference_point`
input_image.select(inference_point, inputs=[input_image], outputs=output_image_point)
# 清除分割图的按钮
clear_button_point = gr.Button("Clear Segmentation Map")
clear_button_point.click(lambda: None, inputs=None, outputs=output_image_point)
# Example images below buttons
demo.launch()
|