Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,967 Bytes
eae9bb9 f773839 86bd2b1 f773839 2ba4ec8 db98a16 f773839 0221ae2 f773839 41d006c f773839 2ba4ec8 db98a16 f773839 2ba4ec8 281ac0f f773839 0221ae2 f773839 281ac0f 0221ae2 f773839 aa489a7 f773839 e8b794f f773839 2ba4ec8 35a87cf f773839 2ba4ec8 35a87cf f773839 0221ae2 f773839 0221ae2 f773839 8f5175e f773839 c08c00a 8f5175e f773839 8f5175e f773839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import spaces
import multiprocessing as mp
import numpy as np
from PIL import Image
import torch
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from mask_adapter import add_maskformer2_config, add_fcclip_config, add_mask_adapter_config
from mask_adapter.sam_maskadapter import SAMVisualizationDemo, SAMPointVisualizationDemo
import gradio as gr
import open_clip
from sam2.build_sam import build_sam2
from mask_adapter.modeling.meta_arch.mask_adapter_head import build_mask_adapter
def setup_cfg(config_file):
cfg = get_cfg()
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
add_fcclip_config(cfg)
add_mask_adapter_config(cfg)
cfg.merge_from_file(config_file)
cfg.freeze()
return cfg
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def inference_automatic(input_img, class_names):
mp.set_start_method("spawn", force=True)
config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
class_names = class_names.split(',')
img = read_image(input_img, format="BGR")
if len(class_names) == 1:
class_names.append('others')
txts = [f'a photo of {cls_name}' for cls_name in class_names]
text = open_clip.tokenize(txts)
text_features = clip_model.encode_text(text.cuda())
text_features /= text_features.norm(dim=-1, keepdim=True)
_, visualized_output = demo.run_on_image(img, class_names,text_features)
return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def inference_point(input_img, evt: gr.SelectData,):
mp.set_start_method("spawn", force=True)
x, y = evt.index[0], evt.index[1]
points = [[x, y]]
print(f"Selected point: {points}")
config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
img = read_image(input_img, format="BGR")
_, visualized_output = demo.run_on_image_with_points(img, points)
return visualized_output
sam2_model = None
clip_model = None
mask_adapter = None
def initialize_models(sam_path, adapter_pth, model_cfg, cfg):
cfg = setup_cfg(cfg)
global sam2_model, clip_model, mask_adapter
if sam2_model is None:
sam2_model = build_sam2(model_cfg, sam_path, device="cpu", apply_postprocessing=False)
sam2_model = sam2_model.to("cuda")
print("SAM2 model initialized.")
if clip_model is None:
clip_model, _, _ = open_clip.create_model_and_transforms("convnext_large_d_320", pretrained="laion2b_s29b_b131k_ft_soup")
clip_model = clip_model.eval()
clip_model = clip_model.to("cuda")
print("CLIP model initialized.")
if mask_adapter is None:
mask_adapter = build_mask_adapter(cfg, "MASKAdapterHead").to("cuda")
mask_adapter = mask_adapter.eval()
adapter_state_dict = torch.load(adapter_pth)
mask_adapter.load_state_dict(adapter_state_dict)
print("Mask Adapter model initialized.")
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam_path = './sam2.1_hiera_large.pt'
adapter_pth = './model_0279999_with_sem_new.pth'
cfg = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
initialize_models(sam_path, adapter_pth, model_cfg, cfg)
# Examples for testing
examples = [
['./demo/images/000000001025.jpg', 'dog, beach, trees, sea, sky, snow, person, rocks, buildings, birds, beach umbrella, beach chair'],
['./demo/images/ADE_val_00000979.jpg', 'sky,sea,mountain,pier,beach,island,,landscape,horizon'],
['./demo/images/ADE_val_00001200.jpg', 'bridge, mountains, trees, water, sky, buildings, boats, animals, flowers, waterfalls, grasslands, rocks'],
]
output_labels = ['segmentation map']
title = '<center><h2>Mask-Adapter + Segment Anything-2</h2></center>'
description = """
<b>Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation</b><br>
Mask-Adapter effectively extends to SAM or SAM-2 without additional training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.<br>
<div style="display: flex; gap: 20px;">
<a href="https://arxiv.org/abs/2406.20076">
<img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv Paper">
</a>
<a href="https://github.com/hustvl/MaskAdapter">
<img src="https://img.shields.io/badge/GitHub-Code-blue" alt="GitHub Code">
</a>
</div>
"""
with gr.Blocks() as demo:
gr.Markdown(title) # Title
gr.Markdown(description) # Description
with gr.Tabs():
with gr.TabItem("Automatic Mode"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type='filepath', label="Input Image")
class_names = gr.Textbox(lines=1, placeholder=None, label='Class Names')
with gr.Column():
output_image = gr.Image(type="pil", label='Segmentation Map')
# Buttons below segmentation map (now placed under segmentation map)
run_button = gr.Button("Run Automatic Segmentation")
run_button.click(inference_automatic, inputs=[input_image, class_names], outputs=output_image)
clear_button = gr.Button("Clear")
clear_button.click(lambda: None, inputs=None, outputs=output_image)
with gr.Row():
gr.Examples(examples=examples, inputs=[input_image, class_names], outputs=output_image)
with gr.TabItem("Point Mode"):
with gr.Row():
with gr.Column():
def init_state():
return []
input_image = gr.Image(type='filepath', label="Upload Image", interactive=True)
points_input = gr.State(value=init_state())
with gr.Column():
output_image_point = gr.Image(type="pil", label='Segmentation Map')
input_image.select(inference_point, inputs=[input_image], outputs=output_image_point)
clear_button_point = gr.Button("Clear Segmentation Map")
clear_button_point.click(lambda: None, inputs=None, outputs=output_image_point)
# Example images below buttons
demo.launch()
|