Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,029 Bytes
eae9bb9 f773839 73550bc f773839 86bd2b1 f773839 73550bc 2ba4ec8 db98a16 f773839 0221ae2 f773839 41d006c f773839 2ba4ec8 db98a16 73550bc 2ba4ec8 281ac0f 73550bc f773839 281ac0f 0221ae2 f773839 60f2f84 f773839 73550bc f773839 e8b794f f773839 2ba4ec8 35a87cf f773839 2ba4ec8 35a87cf f773839 73550bc f773839 0221ae2 f773839 0221ae2 f773839 2ed7fa7 f773839 73550bc 2ed7fa7 f773839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import spaces
import multiprocessing as mp
import numpy as np
from PIL import Image,ImageDraw
import torch
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from mask_adapter import add_maskformer2_config, add_fcclip_config, add_mask_adapter_config
from mask_adapter.sam_maskadapter import SAMVisualizationDemo, SAMPointVisualizationDemo
import gradio as gr
import open_clip
from sam2.build_sam import build_sam2
from mask_adapter.modeling.meta_arch.mask_adapter_head import build_mask_adapter
def setup_cfg(config_file):
cfg = get_cfg()
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
add_fcclip_config(cfg)
add_mask_adapter_config(cfg)
cfg.merge_from_file(config_file)
cfg.freeze()
return cfg
class IMGState:
def __init__(self):
self.img = None
self.img_feat = None
self.selected_points = []
self.selected_points_labels = []
self.selected_bboxes = []
self.available_to_set = True
def set_img(self, img, img_feat):
self.img = img
self.img_feat = img_feat
self.available_to_set = False
def clear(self):
self.img = None
self.img_feat = None
self.selected_points = []
self.selected_points_labels = []
self.selected_bboxes = []
self.available_to_set = True
def clean(self):
self.selected_points = []
self.selected_points_labels = []
self.selected_bboxes = []
def to_device(self, device=torch.device("cuda")):
if self.img_feat is not None:
for k in self.img_feat:
if isinstance(self.img_feat[k], torch.Tensor):
self.img_feat[k] = self.img_feat[k].to(device)
elif isinstance(self.img_feat[k], tuple):
self.img_feat[k] = tuple(v.to(device) for v in self.img_feat[k])
@property
def available(self):
return self.available_to_set
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def inference_automatic(input_img, class_names):
mp.set_start_method("spawn", force=True)
config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
class_names = class_names.split(',')
img = read_image(input_img, format="BGR")
if len(class_names) == 1:
class_names.append('others')
txts = [f'a photo of {cls_name}' for cls_name in class_names]
text = open_clip.tokenize(txts)
text_features = clip_model.encode_text(text.cuda())
text_features /= text_features.norm(dim=-1, keepdim=True)
_, visualized_output = demo.run_on_image(img, class_names,text_features)
return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def inference_point(input_img, img_state,):
mp.set_start_method("spawn", force=True)
points = img_state.selected_points
print(f"Selected point: {points}")
config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
text_features = torch.from_numpy(np.load("./text_embedding/lvis_coco_text_embedding.npy")).cuda()
_, visualized_output = demo.run_on_image_with_points(img_state.img, points,text_features)
return visualized_output
sam2_model = None
clip_model = None
mask_adapter = None
def get_points_with_draw(image, img_state, evt: gr.SelectData):
label = 'Add Mask'
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 10, (97, 217, 54) if label == "Add Mask" else (237, 34, 13)
img_state.selected_points.append([x, y])
img_state.selected_points_labels.append(1 if label == "Add Mask" else 0)
img_state.set_img(np.array(image), None)
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
return img_state, image
def initialize_models(sam_path, adapter_pth, model_cfg, cfg):
cfg = setup_cfg(cfg)
global sam2_model, clip_model, mask_adapter
if sam2_model is None:
sam2_model = build_sam2(model_cfg, sam_path, device="cpu", apply_postprocessing=False)
sam2_model = sam2_model.to("cuda")
print("SAM2 model initialized.")
if clip_model is None:
clip_model, _, _ = open_clip.create_model_and_transforms("convnext_large_d_320", pretrained="laion2b_s29b_b131k_ft_soup")
clip_model = clip_model.eval()
clip_model = clip_model.to("cuda")
print("CLIP model initialized.")
if mask_adapter is None:
mask_adapter = build_mask_adapter(cfg, "MASKAdapterHead").to("cuda")
mask_adapter = mask_adapter.eval()
adapter_state_dict = torch.load(adapter_pth)
mask_adapter.load_state_dict(adapter_state_dict)
print("Mask Adapter model initialized.")
def clear_everything(img_state):
img_state.clear()
return img_state, None, None
def clean_prompts(img_state):
img_state.clean()
return img_state, Image.fromarray(img_state.img), None
# 初始化配置和模型
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam_path = './sam2.1_hiera_large.pt'
adapter_pth = './model_0279999_with_sem_new.pth'
cfg = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
initialize_models(sam_path, adapter_pth, model_cfg, cfg)
# Examples for testing
examples = [
['./demo/images/000000001025.jpg', 'dog, beach, trees, sea, sky, snow, person, rocks, buildings, birds, beach umbrella, beach chair'],
['./demo/images/ADE_val_00000979.jpg', 'sky,sea,mountain,pier,beach,island,,landscape,horizon'],
['./demo/images/ADE_val_00001200.jpg', 'bridge, mountains, trees, water, sky, buildings, boats, animals, flowers, waterfalls, grasslands, rocks'],
]
examples_point = [
['./demo/images/ADE_val_00000739.jpg'],
['./demo/images/000000290833.jpg'],
['./demo/images/2010_001315.jpg'],
['./demo/images/ADE_val_00000001.jpg'],
['./demo/images/000000000785.jpg'],
]
output_labels = ['segmentation map']
title = '<center><h2>Mask-Adapter + Segment Anything-2</h2></center>'
description = """
<b>Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation</b><br>
Mask-Adapter effectively extends to SAM or SAM-2 without additional training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.<br>
<div style="display: flex; gap: 20px;">
<a href="https://arxiv.org/abs/2406.20076">
<img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv Paper">
</a>
<a href="https://github.com/hustvl/MaskAdapter">
<img src="https://img.shields.io/badge/GitHub-Code-blue" alt="GitHub Code">
</a>
</div>
"""
with gr.Blocks() as demo:
gr.Markdown(title) # Title
gr.Markdown(description) # Description
with gr.Tabs():
with gr.TabItem("Automatic Mode"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type='filepath', label="Input Image")
class_names = gr.Textbox(lines=1, placeholder=None, label='Class Names')
with gr.Column():
output_image = gr.Image(type="pil", label='Segmentation Map')
# Buttons below segmentation map (now placed under segmentation map)
run_button = gr.Button("Run Automatic Segmentation")
run_button.click(inference_automatic, inputs=[input_image, class_names], outputs=output_image)
clear_button = gr.Button("Clear")
clear_button.click(lambda: None, inputs=None, outputs=output_image)
with gr.Row():
gr.Examples(examples=examples, inputs=[input_image, class_names], outputs=output_image)
with gr.TabItem("Point Mode"):
img_state_points = gr.State(value=IMGState())
with gr.Row(): # 水平排列
with gr.Column(scale=1):
input_image = gr.Image( label="Input Image", type="pil")
with gr.Column(scale=1): # 第二列:分割图输出
output_image_point = gr.Image(type="pil", label='Segmentation Map',interactive=False) # 输出分割图
input_image.select(
get_points_with_draw,
[input_image, img_state_points],
outputs=[img_state_points, input_image]
).then(
inference_point,
inputs=[input_image, img_state_points],
outputs=[output_image_point]
)
clear_prompt_button_point = gr.Button("Clean Prompt")
clear_prompt_button_point.click(
clean_prompts,
inputs=[img_state_points],
outputs=[img_state_points, input_image, output_image_point]
)
clear_button_point = gr.Button("Restart")
clear_button_point.click(
clear_everything,
inputs=[img_state_points],
outputs=[img_state_points, input_image, output_image_point]
)
with gr.Row():
gr.Examples(examples=examples_point, inputs=input_image, outputs=output_image_point,examples_per_page=5)
# Example images below buttons
demo.launch()
|