Spaces:
Runtime error
Runtime error
zwl
commited on
Commit
·
2a8cba1
1
Parent(s):
63f3205
add UniPC
Browse files- app.py +272 -0
- nsfw.png +0 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, UniPCMultistepScheduler
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
|
7 |
+
scheduler = UniPCMultistepScheduler(
|
8 |
+
beta_start=0.00085,
|
9 |
+
beta_end =0.012,
|
10 |
+
solver_order=2,
|
11 |
+
prediction_type="epsilon",
|
12 |
+
thresholding=False,
|
13 |
+
solver_type='bh2',
|
14 |
+
lower_order_final=True,
|
15 |
+
disable_corrector=[0],
|
16 |
+
)
|
17 |
+
|
18 |
+
class Model:
|
19 |
+
def __init__(self, name, path, prefix):
|
20 |
+
self.name = name
|
21 |
+
self.path = path
|
22 |
+
self.prefix = prefix
|
23 |
+
self.pipe_t2i = None
|
24 |
+
self.pipe_i2i = None
|
25 |
+
|
26 |
+
models = [
|
27 |
+
Model("Stable-Diffusion-v1.4", "CompVis/stable-diffusion-v1-4", "The 1.4 version of official stable-diffusion"),
|
28 |
+
Model("Waifu", "hakurei/waifu-diffusion", "anime style"),
|
29 |
+
]
|
30 |
+
|
31 |
+
last_mode = "txt2img"
|
32 |
+
current_model = models[0]
|
33 |
+
current_model_path = current_model.path
|
34 |
+
|
35 |
+
auth_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
36 |
+
|
37 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
38 |
+
|
39 |
+
if torch.cuda.is_available():
|
40 |
+
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16, use_auth_token=auth_token)
|
41 |
+
for model in models:
|
42 |
+
try:
|
43 |
+
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16, use_auth_token=auth_token)
|
44 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token)
|
45 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token)
|
46 |
+
except:
|
47 |
+
models.remove(model)
|
48 |
+
pipe = models[0].pipe_t2i
|
49 |
+
pipe = pipe.to("cuda")
|
50 |
+
|
51 |
+
else:
|
52 |
+
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", use_auth_token=auth_token)
|
53 |
+
for model in models:
|
54 |
+
try:
|
55 |
+
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", use_auth_token=auth_token)
|
56 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token)
|
57 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token)
|
58 |
+
except:
|
59 |
+
models.remove(model)
|
60 |
+
pipe = models[0].pipe_t2i
|
61 |
+
pipe = pipe.to("cpu")
|
62 |
+
|
63 |
+
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
64 |
+
|
65 |
+
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
66 |
+
|
67 |
+
global current_model
|
68 |
+
for model in models:
|
69 |
+
if model.name == model_name:
|
70 |
+
current_model = model
|
71 |
+
model_path = current_model.path
|
72 |
+
|
73 |
+
generator = torch.Generator('cuda' if torch.cuda.is_available() else 'cpu').manual_seed(seed) if seed != 0 else None
|
74 |
+
|
75 |
+
if img is not None:
|
76 |
+
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
|
77 |
+
else:
|
78 |
+
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
|
79 |
+
|
80 |
+
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
81 |
+
|
82 |
+
global last_mode
|
83 |
+
global pipe
|
84 |
+
global current_model_path
|
85 |
+
if model_path != current_model_path or last_mode != "txt2img":
|
86 |
+
current_model_path = model_path
|
87 |
+
|
88 |
+
pipe.to("cpu")
|
89 |
+
pipe = current_model.pipe_t2i
|
90 |
+
|
91 |
+
if torch.cuda.is_available():
|
92 |
+
pipe = pipe.to("cuda")
|
93 |
+
last_mode = "txt2img"
|
94 |
+
|
95 |
+
prompt = current_model.prefix + prompt
|
96 |
+
result = pipe(
|
97 |
+
prompt,
|
98 |
+
negative_prompt = neg_prompt,
|
99 |
+
# num_images_per_prompt=n_images,
|
100 |
+
num_inference_steps = int(steps),
|
101 |
+
guidance_scale = guidance,
|
102 |
+
width = width,
|
103 |
+
height = height,
|
104 |
+
generator = generator)
|
105 |
+
|
106 |
+
return replace_nsfw_images(result)
|
107 |
+
|
108 |
+
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
|
109 |
+
|
110 |
+
global last_mode
|
111 |
+
global pipe
|
112 |
+
global current_model_path
|
113 |
+
if model_path != current_model_path or last_mode != "img2img":
|
114 |
+
current_model_path = model_path
|
115 |
+
|
116 |
+
pipe.to("cpu")
|
117 |
+
pipe = current_model.pipe_i2i
|
118 |
+
|
119 |
+
if torch.cuda.is_available():
|
120 |
+
pipe = pipe.to("cuda")
|
121 |
+
last_mode = "img2img"
|
122 |
+
|
123 |
+
prompt = current_model.prefix + prompt
|
124 |
+
ratio = min(height / img.height, width / img.width)
|
125 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
126 |
+
result = pipe(
|
127 |
+
prompt,
|
128 |
+
negative_prompt = neg_prompt,
|
129 |
+
# num_images_per_prompt=n_images,
|
130 |
+
init_image = img,
|
131 |
+
num_inference_steps = int(steps),
|
132 |
+
strength = strength,
|
133 |
+
guidance_scale = guidance,
|
134 |
+
#width = width,
|
135 |
+
#height = height,
|
136 |
+
generator = generator)
|
137 |
+
|
138 |
+
return replace_nsfw_images(result)
|
139 |
+
|
140 |
+
def replace_nsfw_images(results):
|
141 |
+
for i in range(len(results.images)):
|
142 |
+
if results.nsfw_content_detected[i]:
|
143 |
+
results.images[i] = Image.open("nsfw.png")
|
144 |
+
return results.images[0]
|
145 |
+
|
146 |
+
css = """
|
147 |
+
<style>
|
148 |
+
.finetuned-diffusion-div {
|
149 |
+
text-align: center;
|
150 |
+
max-width: 700px;
|
151 |
+
margin: 0 auto;
|
152 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
153 |
+
}
|
154 |
+
.finetuned-diffusion-div div {
|
155 |
+
display: inline-flex;
|
156 |
+
align-items: center;
|
157 |
+
gap: 0.8rem;
|
158 |
+
font-size: 1.75rem;
|
159 |
+
}
|
160 |
+
.finetuned-diffusion-div div h1 {
|
161 |
+
font-weight: 900;
|
162 |
+
margin-top: 15px;
|
163 |
+
margin-bottom: 15px;
|
164 |
+
text-align: center;
|
165 |
+
line-height: 150%;
|
166 |
+
}
|
167 |
+
.finetuned-diffusion-div p {
|
168 |
+
margin-bottom: 10px;
|
169 |
+
font-size: 94%;
|
170 |
+
}
|
171 |
+
.finetuned-diffusion-div p a {
|
172 |
+
text-decoration: underline;
|
173 |
+
}
|
174 |
+
.tabs {
|
175 |
+
margin-top: 0px;
|
176 |
+
margin-bottom: 0px;
|
177 |
+
}
|
178 |
+
#gallery {
|
179 |
+
min-height: 20rem;
|
180 |
+
}
|
181 |
+
.container {
|
182 |
+
max-width: 1000px;
|
183 |
+
margin: auto;
|
184 |
+
padding-top: 1.5rem;
|
185 |
+
}
|
186 |
+
</style>
|
187 |
+
"""
|
188 |
+
with gr.Blocks(css=css) as demo:
|
189 |
+
gr.HTML(
|
190 |
+
f"""
|
191 |
+
<div class="finetuned-diffusion-div">
|
192 |
+
<div>
|
193 |
+
<h1>Stable-Diffusion with UniPC</h1>
|
194 |
+
</div>
|
195 |
+
<br>
|
196 |
+
<p>
|
197 |
+
❤️ Acknowledgement: Hardware resources of this demo are supported by HuggingFace 🤗 . Many thanks for the help!
|
198 |
+
</p>
|
199 |
+
<br>
|
200 |
+
<p>
|
201 |
+
This is a demo of sampling by UniPC with two variants of Stable Diffusion models, including <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4">Stable-Diffusion-v1.4</a> and <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>.
|
202 |
+
</p>
|
203 |
+
<br>
|
204 |
+
<p>
|
205 |
+
<a href="https://github.com/wl-zhao/UniPC">UniPC</a> is a training-free framework designed for the fast sampling of diffusion models, which consists of a corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders.
|
206 |
+
</p>
|
207 |
+
<p>
|
208 |
+
We use <a href="https://github.com/huggingface/diffusers">Diffusers</a> 🧨 to implement this demo, which currently supports the multistep UniPC scheduler. For more details of UniPC with Diffusers, check <a href="https://github.com/huggingface/diffusers/pull/2373">this pull request</a>.
|
209 |
+
</p>
|
210 |
+
<br>
|
211 |
+
<br>
|
212 |
+
<p>
|
213 |
+
Running on <b>{device}</b>
|
214 |
+
</p>
|
215 |
+
</div>
|
216 |
+
"""
|
217 |
+
)
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
|
221 |
+
with gr.Column(scale=55):
|
222 |
+
with gr.Group():
|
223 |
+
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
224 |
+
with gr.Row():
|
225 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
226 |
+
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
227 |
+
|
228 |
+
|
229 |
+
image_out = gr.Image(height=512)
|
230 |
+
# gallery = gr.Gallery(
|
231 |
+
# label="Generated images", show_label=False, elem_id="gallery"
|
232 |
+
# ).style(grid=[1], height="auto")
|
233 |
+
|
234 |
+
with gr.Column(scale=45):
|
235 |
+
with gr.Tab("Options"):
|
236 |
+
with gr.Group():
|
237 |
+
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
238 |
+
|
239 |
+
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
240 |
+
|
241 |
+
with gr.Row():
|
242 |
+
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
243 |
+
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=100, step=1)
|
244 |
+
|
245 |
+
with gr.Row():
|
246 |
+
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
247 |
+
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
|
248 |
+
|
249 |
+
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
250 |
+
|
251 |
+
with gr.Tab("Image to image"):
|
252 |
+
with gr.Group():
|
253 |
+
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
254 |
+
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
255 |
+
|
256 |
+
# model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
|
257 |
+
|
258 |
+
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
259 |
+
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
260 |
+
|
261 |
+
generate.click(inference, inputs=inputs, outputs=image_out)
|
262 |
+
|
263 |
+
|
264 |
+
gr.Markdown('''
|
265 |
+
Stable-diffusion Models by [CompVis](https://huggingface.co/CompVis) and [stabilityai](https://huggingface.co/stabilityai), Waifu-diffusion models by [@hakurei](https://huggingface.co/hakurei). Most of the code of this demo are copied from [@anzorq's fintuned-diffusion](https://huggingface.co/spaces/anzorq/finetuned_diffusion/tree/main) ❤️<br>
|
266 |
+
Space by [Wenliang Zhao](https://github.com/wl-zhao).
|
267 |
+
|
268 |
+
![visitors](https://visitor-badge.glitch.me/badge?page_id=wl-zhao.unipc_sdm)
|
269 |
+
''')
|
270 |
+
|
271 |
+
demo.queue(concurrency_count=1)
|
272 |
+
demo.launch(debug=False, share=False)
|
nsfw.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
diffusers
|
3 |
+
transformers
|
4 |
+
scipy
|
5 |
+
ftfy
|
6 |
+
accelerate
|