wjbmattingly commited on
Commit
fcbf10b
·
verified ·
1 Parent(s): 62421d3
Files changed (1) hide show
  1. app.py +91 -109
app.py CHANGED
@@ -25,6 +25,12 @@ DEFAULT_NER_LABELS = "person, organization, location, date, event"
25
 
26
  # }
27
 
 
 
 
 
 
 
28
  def array_to_image_path(image_array):
29
  # Convert numpy array to PIL Image
30
  img = Image.fromarray(np.uint8(image_array))
@@ -43,26 +49,14 @@ def array_to_image_path(image_array):
43
  return full_path
44
 
45
  models = {
46
- "Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained(
47
- "Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto"
48
- ).cuda().eval(),
49
 
50
- "medieval-data/qwen2.5-vl-old-church-slavonic": Qwen2_5_VLForConditionalGeneration.from_pretrained(
51
- "medieval-data/qwen2.5-vl-old-church-slavonic", trust_remote_code=True, torch_dtype="auto"
52
- ).cuda().eval()
53
  }
54
 
55
  processors = {
56
- "Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained(
57
- "Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True
58
- ),
59
-
60
- "medieval-data/qwen2.5-vl-old-church-slavonic": AutoProcessor.from_pretrained(
61
- "medieval-data/qwen2.5-vl-old-church-slavonic", trust_remote_code=True
62
- )
63
  }
64
 
65
-
66
  DESCRIPTION = "This demo uses[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)"
67
 
68
  kwargs = {}
@@ -74,104 +68,92 @@ prompt_suffix = "<|end|>\n"
74
 
75
  @spaces.GPU
76
  def run_example(image, model_id="Qwen/Qwen2.5-VL-7B-Instruct", run_ner=False, ner_labels=DEFAULT_NER_LABELS):
77
- try:
78
- # First get the OCR text
79
- text_input = "Convert the image to text."
80
- image_path = array_to_image_path(image)
81
-
82
- model = models[model_id]
83
- processor = processors[model_id]
84
-
85
- prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
86
- image = Image.fromarray(image).convert("RGB")
87
- messages = [
88
- {
89
- "role": "user",
90
- "content": [
91
- {
92
- "type": "image",
93
- "image": image_path,
94
- },
95
- {"type": "text", "text": text_input},
96
- ],
97
- }
98
- ]
99
-
100
- # Preparation for inference
101
- text = processor.apply_chat_template(
102
- messages, tokenize=False, add_generation_prompt=True
103
- )
104
- image_inputs, video_inputs = process_vision_info(messages)
105
- inputs = processor(
106
- text=[text],
107
- images=image_inputs,
108
- videos=video_inputs,
109
- padding=True,
110
- return_tensors="pt",
111
- )
112
- inputs = inputs.to("cuda")
113
-
114
- # Inference: Generation of the output
115
- generated_ids = model.generate(**inputs, max_new_tokens=1024)
116
- generated_ids_trimmed = [
117
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
118
- ]
119
- output_text = processor.batch_decode(
120
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
 
 
 
 
 
 
 
 
 
121
  )
122
 
123
- ocr_text = output_text[0]
 
 
124
 
125
- # Create state dictionary
126
- state_dict = {
127
- "original_text": ocr_text,
128
- "entities": []
129
- }
130
 
131
- # If NER is enabled, process the OCR text
132
- if run_ner:
133
- ner_results = gliner_model.predict_entities(
134
- ocr_text,
135
- ner_labels.split(","),
136
- threshold=0.3
137
- )
138
 
139
- # Update state with entities
140
- state_dict["entities"] = ner_results
141
-
142
- # Create a list of tuples (text, label) for highlighting
143
- highlighted_text = []
144
- last_end = 0
145
-
146
- # Sort entities by start position
147
- sorted_entities = sorted(ner_results, key=lambda x: x["start"])
148
-
149
- # Process each entity and add non-entity text segments
150
- for entity in sorted_entities:
151
- # Add non-entity text before the current entity
152
- if last_end < entity["start"]:
153
- highlighted_text.append((ocr_text[last_end:entity["start"]], None))
154
-
155
- # Add the entity text with its label
156
- highlighted_text.append((
157
- ocr_text[entity["start"]:entity["end"]],
158
- entity["label"]
159
- ))
160
- last_end = entity["end"]
161
-
162
- # Add any remaining text after the last entity
163
- if last_end < len(ocr_text):
164
- highlighted_text.append((ocr_text[last_end:], None))
165
-
166
- return highlighted_text, state_dict
167
 
168
- # If NER is disabled, return the text without highlighting
169
- highlighted_text = [(ocr_text, None)]
170
- return highlighted_text, state_dict
171
 
172
- except Exception as e:
173
- error_msg = f"Error processing image: {str(e)}"
174
- return [(error_msg, None)], {"original_text": error_msg, "entities": []}
 
 
 
 
175
 
176
  css = """
177
  /* Overall app styling */
@@ -282,7 +264,7 @@ with gr.Blocks(css=css) as demo:
282
  # Modify create_zip to use the state data
283
  def create_zip(image, fname, ocr_result):
284
  # Validate inputs
285
- if not fname or image is None:
286
  return None
287
 
288
  try:
@@ -297,9 +279,9 @@ with gr.Blocks(css=css) as demo:
297
  img_path = os.path.join(temp_dir, f"{fname}.png")
298
  image.save(img_path)
299
 
300
- # Use the OCR result from state - now it's a dictionary
301
- original_text = ocr_result.get("original_text", "") if ocr_result else ""
302
- entities = ocr_result.get("entities", []) if ocr_result else []
303
 
304
  # Save text
305
  txt_path = os.path.join(temp_dir, f"{fname}.txt")
 
25
 
26
  # }
27
 
28
+ class TextWithMetadata(list):
29
+ def __init__(self, *args, **kwargs):
30
+ super().__init__(*args)
31
+ self.original_text = kwargs.get('original_text', '')
32
+ self.entities = kwargs.get('entities', [])
33
+
34
  def array_to_image_path(image_array):
35
  # Convert numpy array to PIL Image
36
  img = Image.fromarray(np.uint8(image_array))
 
49
  return full_path
50
 
51
  models = {
52
+ "Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
 
 
53
 
 
 
 
54
  }
55
 
56
  processors = {
57
+ "Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True)
 
 
 
 
 
 
58
  }
59
 
 
60
  DESCRIPTION = "This demo uses[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)"
61
 
62
  kwargs = {}
 
68
 
69
  @spaces.GPU
70
  def run_example(image, model_id="Qwen/Qwen2.5-VL-7B-Instruct", run_ner=False, ner_labels=DEFAULT_NER_LABELS):
71
+ # First get the OCR text
72
+ text_input = "Convert the image to text."
73
+ image_path = array_to_image_path(image)
74
+
75
+ model = models[model_id]
76
+ processor = processors[model_id]
77
+
78
+ prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
79
+ image = Image.fromarray(image).convert("RGB")
80
+ messages = [
81
+ {
82
+ "role": "user",
83
+ "content": [
84
+ {
85
+ "type": "image",
86
+ "image": image_path,
87
+ },
88
+ {"type": "text", "text": text_input},
89
+ ],
90
+ }
91
+ ]
92
+
93
+ # Preparation for inference
94
+ text = processor.apply_chat_template(
95
+ messages, tokenize=False, add_generation_prompt=True
96
+ )
97
+ image_inputs, video_inputs = process_vision_info(messages)
98
+ inputs = processor(
99
+ text=[text],
100
+ images=image_inputs,
101
+ videos=video_inputs,
102
+ padding=True,
103
+ return_tensors="pt",
104
+ )
105
+ inputs = inputs.to("cuda")
106
+
107
+ # Inference: Generation of the output
108
+ generated_ids = model.generate(**inputs, max_new_tokens=1024)
109
+ generated_ids_trimmed = [
110
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
111
+ ]
112
+ output_text = processor.batch_decode(
113
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
114
+ )
115
+
116
+ ocr_text = output_text[0]
117
+
118
+ # If NER is enabled, process the OCR text
119
+ if run_ner:
120
+ ner_results = gliner_model.predict_entities(
121
+ ocr_text,
122
+ ner_labels.split(","),
123
+ threshold=0.3
124
  )
125
 
126
+ # Create a list of tuples (text, label) for highlighting
127
+ highlighted_text = []
128
+ last_end = 0
129
 
130
+ # Sort entities by start position
131
+ sorted_entities = sorted(ner_results, key=lambda x: x["start"])
 
 
 
132
 
133
+ # Process each entity and add non-entity text segments
134
+ for entity in sorted_entities:
135
+ # Add non-entity text before the current entity
136
+ if last_end < entity["start"]:
137
+ highlighted_text.append((ocr_text[last_end:entity["start"]], None))
 
 
138
 
139
+ # Add the entity text with its label
140
+ highlighted_text.append((
141
+ ocr_text[entity["start"]:entity["end"]],
142
+ entity["label"]
143
+ ))
144
+ last_end = entity["end"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
+ # Add any remaining text after the last entity
147
+ if last_end < len(ocr_text):
148
+ highlighted_text.append((ocr_text[last_end:], None))
149
 
150
+ # Create TextWithMetadata instance with the highlighted text and metadata
151
+ result = TextWithMetadata(highlighted_text, original_text=ocr_text, entities=ner_results)
152
+ return result, result # Return twice: once for display, once for state
153
+
154
+ # If NER is disabled, return the text without highlighting
155
+ result = TextWithMetadata([(ocr_text, None)], original_text=ocr_text, entities=[])
156
+ return result, result # Return twice: once for display, once for state
157
 
158
  css = """
159
  /* Overall app styling */
 
264
  # Modify create_zip to use the state data
265
  def create_zip(image, fname, ocr_result):
266
  # Validate inputs
267
+ if not fname or image is None: # Changed the validation check
268
  return None
269
 
270
  try:
 
279
  img_path = os.path.join(temp_dir, f"{fname}.png")
280
  image.save(img_path)
281
 
282
+ # Use the OCR result from state
283
+ original_text = ocr_result.original_text if ocr_result else ""
284
+ entities = ocr_result.entities if ocr_result else []
285
 
286
  # Save text
287
  txt_path = os.path.join(temp_dir, f"{fname}.txt")