# Copyright (c) Facebook, Inc. and its affiliates. import io import unittest import warnings import torch from torch.hub import _check_module_exists from detectron2 import model_zoo from detectron2.config import get_cfg from detectron2.export import STABLE_ONNX_OPSET_VERSION from detectron2.export.flatten import TracingAdapter from detectron2.modeling import build_model from detectron2.utils.testing import ( _pytorch1111_symbolic_opset9_repeat_interleave, _pytorch1111_symbolic_opset9_to, get_sample_coco_image, register_custom_op_onnx_export, skipIfOnCPUCI, skipIfUnsupportedMinOpsetVersion, skipIfUnsupportedMinTorchVersion, unregister_custom_op_onnx_export, ) @unittest.skipIf(not _check_module_exists("onnx"), "ONNX not installed.") @skipIfUnsupportedMinTorchVersion("1.10") class TestONNXTracingExport(unittest.TestCase): def testMaskRCNNFPN(self): def inference_func(model, images): with warnings.catch_warnings(record=True): inputs = [{"image": image} for image in images] inst = model.inference(inputs, do_postprocess=False)[0] return [{"instances": inst}] self._test_model_zoo_from_config_path( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func ) @skipIfOnCPUCI def testMaskRCNNC4(self): def inference_func(model, image): inputs = [{"image": image}] return model.inference(inputs, do_postprocess=False)[0] self._test_model_zoo_from_config_path( "COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml", inference_func ) @skipIfOnCPUCI def testCascadeRCNN(self): def inference_func(model, image): inputs = [{"image": image}] return model.inference(inputs, do_postprocess=False)[0] self._test_model_zoo_from_config_path( "Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml", inference_func ) def testRetinaNet(self): def inference_func(model, image): return model.forward([{"image": image}])[0]["instances"] self._test_model_zoo_from_config_path( "COCO-Detection/retinanet_R_50_FPN_3x.yaml", inference_func ) @skipIfOnCPUCI def testMaskRCNNFPN_batched(self): def inference_func(model, image1, image2): inputs = [{"image": image1}, {"image": image2}] return model.inference(inputs, do_postprocess=False) self._test_model_zoo_from_config_path( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func, batch=2 ) @skipIfUnsupportedMinOpsetVersion(16, STABLE_ONNX_OPSET_VERSION) @skipIfUnsupportedMinTorchVersion("1.11.1") def testMaskRCNNFPN_with_postproc(self): def inference_func(model, image): inputs = [{"image": image, "height": image.shape[1], "width": image.shape[2]}] return model.inference(inputs, do_postprocess=True)[0]["instances"] self._test_model_zoo_from_config_path( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func, opset_version=STABLE_ONNX_OPSET_VERSION, ) ################################################################################ # Testcase internals - DO NOT add tests below this point ################################################################################ def setUp(self): register_custom_op_onnx_export("::to", _pytorch1111_symbolic_opset9_to, 9, "1.11.1") register_custom_op_onnx_export( "::repeat_interleave", _pytorch1111_symbolic_opset9_repeat_interleave, 9, "1.11.1", ) def tearDown(self): unregister_custom_op_onnx_export("::to", 9, "1.11.1") unregister_custom_op_onnx_export("::repeat_interleave", 9, "1.11.1") def _test_model( self, model, inputs, inference_func=None, opset_version=STABLE_ONNX_OPSET_VERSION, save_onnx_graph_path=None, **export_kwargs, ): import onnx # isort:skip f = io.BytesIO() adapter_model = TracingAdapter(model, inputs, inference_func) adapter_model.eval() with torch.no_grad(): try: torch.onnx.enable_log() except AttributeError: # Older ONNX versions does not have this API pass torch.onnx.export( adapter_model, adapter_model.flattened_inputs, f, training=torch.onnx.TrainingMode.EVAL, opset_version=opset_version, verbose=True, **export_kwargs, ) onnx_model = onnx.load_from_string(f.getvalue()) assert onnx_model is not None if save_onnx_graph_path: onnx.save(onnx_model, save_onnx_graph_path) def _test_model_zoo_from_config_path( self, config_path, inference_func, batch=1, opset_version=STABLE_ONNX_OPSET_VERSION, save_onnx_graph_path=None, **export_kwargs, ): model = model_zoo.get(config_path, trained=True) image = get_sample_coco_image() inputs = tuple(image.clone() for _ in range(batch)) return self._test_model( model, inputs, inference_func, opset_version, save_onnx_graph_path, **export_kwargs ) def _test_model_from_config_path( self, config_path, inference_func, batch=1, opset_version=STABLE_ONNX_OPSET_VERSION, save_onnx_graph_path=None, **export_kwargs, ): from projects.PointRend import point_rend # isort:skip cfg = get_cfg() cfg.DATALOADER.NUM_WORKERS = 0 point_rend.add_pointrend_config(cfg) cfg.merge_from_file(config_path) cfg.freeze() model = build_model(cfg) image = get_sample_coco_image() inputs = tuple(image.clone() for _ in range(batch)) return self._test_model( model, inputs, inference_func, opset_version, save_onnx_graph_path, **export_kwargs )