Spaces:
Running
Running
File size: 8,771 Bytes
8a6df40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import torch
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
def recursive_glob(rootdir='.', suffix=''):
"""Performs recursive glob with given suffix and rootdir
:param rootdir is the root directory
:param suffix is the suffix to be searched
"""
return [os.path.join(looproot, filename)
for looproot, _, filenames in os.walk(rootdir)
for filename in filenames if filename.endswith(suffix)]
def get_cityscapes_labels():
return np.array([
# [ 0, 0, 0],
[128, 64, 128],
[244, 35, 232],
[70, 70, 70],
[102, 102, 156],
[190, 153, 153],
[153, 153, 153],
[250, 170, 30],
[220, 220, 0],
[107, 142, 35],
[152, 251, 152],
[0, 130, 180],
[220, 20, 60],
[255, 0, 0],
[0, 0, 142],
[0, 0, 70],
[0, 60, 100],
[0, 80, 100],
[0, 0, 230],
[119, 11, 32]])
def get_pascal_labels():
"""Load the mapping that associates pascal classes with label colors
Returns:
np.ndarray with dimensions (21, 3)
"""
return np.asarray([[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]])
def get_mhp_labels():
"""Load the mapping that associates pascal classes with label colors
Returns:
np.ndarray with dimensions (21, 3)
"""
return np.asarray([[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128], # 21
[96, 0, 0], [0, 96, 0], [96, 96, 0],
[0, 0, 96], [96, 0, 96], [0, 96, 96], [96, 96, 96],
[32, 0, 0], [160, 0, 0], [32, 96, 0], [160, 96, 0],
[32, 0, 96], [160, 0, 96], [32, 96, 96], [160, 96, 96],
[0, 32, 0], [96, 32, 0], [0, 160, 0], [96, 160, 0],
[0, 32, 96], # 41
[48, 0, 0], [0, 48, 0], [48, 48, 0],
[0, 0, 96], [48, 0, 48], [0, 48, 48], [48, 48, 48],
[16, 0, 0], [80, 0, 0], [16, 48, 0], [80, 48, 0],
[16, 0, 48], [80, 0, 48], [16, 48, 48], [80, 48, 48],
[0, 16, 0], [48, 16, 0], [0, 80, 0], # 59
])
def encode_segmap(mask):
"""Encode segmentation label images as pascal classes
Args:
mask (np.ndarray): raw segmentation label image of dimension
(M, N, 3), in which the Pascal classes are encoded as colours.
Returns:
(np.ndarray): class map with dimensions (M,N), where the value at
a given location is the integer denoting the class index.
"""
mask = mask.astype(int)
label_mask = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.int16)
for ii, label in enumerate(get_pascal_labels()):
label_mask[np.where(np.all(mask == label, axis=-1))[:2]] = ii
label_mask = label_mask.astype(int)
return label_mask
def decode_seg_map_sequence(label_masks, dataset='pascal'):
rgb_masks = []
for label_mask in label_masks:
rgb_mask = decode_segmap(label_mask, dataset)
rgb_masks.append(rgb_mask)
rgb_masks = torch.from_numpy(np.array(rgb_masks).transpose([0, 3, 1, 2]))
return rgb_masks
def decode_segmap(label_mask, dataset, plot=False):
"""Decode segmentation class labels into a color image
Args:
label_mask (np.ndarray): an (M,N) array of integer values denoting
the class label at each spatial location.
plot (bool, optional): whether to show the resulting color image
in a figure.
Returns:
(np.ndarray, optional): the resulting decoded color image.
"""
if dataset == 'pascal':
n_classes = 21
label_colours = get_pascal_labels()
elif dataset == 'cityscapes':
n_classes = 19
label_colours = get_cityscapes_labels()
elif dataset == 'mhp':
n_classes = 59
label_colours = get_mhp_labels()
else:
raise NotImplementedError
r = label_mask.copy()
g = label_mask.copy()
b = label_mask.copy()
for ll in range(0, n_classes):
r[label_mask == ll] = label_colours[ll, 0]
g[label_mask == ll] = label_colours[ll, 1]
b[label_mask == ll] = label_colours[ll, 2]
rgb = np.zeros((label_mask.shape[0], label_mask.shape[1], 3))
rgb[:, :, 0] = r / 255.0
rgb[:, :, 1] = g / 255.0
rgb[:, :, 2] = b / 255.0
if plot:
plt.imshow(rgb)
plt.show()
else:
return rgb
def generate_param_report(logfile, param):
log_file = open(logfile, 'w')
for key, val in param.items():
log_file.write(key + ':' + str(val) + '\n')
log_file.close()
def cross_entropy2d(logit, target, ignore_index=255, weight=None, size_average=True, batch_average=True):
n, c, h, w = logit.size()
# logit = logit.permute(0, 2, 3, 1)
target = target.squeeze(1)
if weight is None:
criterion = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index,size_average=size_average)
else:
criterion = nn.CrossEntropyLoss(weight=torch.from_numpy(np.array(weight)).float().cuda(), ignore_index=ignore_index, size_average=size_average)
loss = criterion(logit, target.long())
return loss
def cross_entropy2d_dataparallel(logit, target, ignore_index=255, weight=None, size_average=True, batch_average=True):
n, c, h, w = logit.size()
# logit = logit.permute(0, 2, 3, 1)
target = target.squeeze(1)
if weight is None:
criterion = nn.DataParallel(nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index,size_average=size_average))
else:
criterion = nn.DataParallel(nn.CrossEntropyLoss(weight=torch.from_numpy(np.array(weight)).float().cuda(), ignore_index=ignore_index, size_average=size_average))
loss = criterion(logit, target.long())
return loss.sum()
def lr_poly(base_lr, iter_, max_iter=100, power=0.9):
return base_lr * ((1 - float(iter_) / max_iter) ** power)
def get_iou(pred, gt, n_classes=21):
total_iou = 0.0
for i in range(len(pred)):
pred_tmp = pred[i]
gt_tmp = gt[i]
intersect = [0] * n_classes
union = [0] * n_classes
for j in range(n_classes):
match = (pred_tmp == j) + (gt_tmp == j)
it = torch.sum(match == 2).item()
un = torch.sum(match > 0).item()
intersect[j] += it
union[j] += un
iou = []
for k in range(n_classes):
if union[k] == 0:
continue
iou.append(intersect[k] / union[k])
img_iou = (sum(iou) / len(iou))
total_iou += img_iou
return total_iou
def scale_tensor(input,size=512,mode='bilinear'):
print(input.size())
# b,h,w = input.size()
_, _, h, w = input.size()
if mode == 'nearest':
if h == 512 and w == 512:
return input
return F.upsample_nearest(input,size=(size,size))
if h>512 and w > 512:
return F.upsample(input, size=(size,size), mode=mode, align_corners=True)
return F.upsample(input, size=(size,size), mode=mode, align_corners=True)
def scale_tensor_list(input,):
output = []
for i in range(len(input)-1):
output_item = []
for j in range(len(input[i])):
_, _, h, w = input[-1][j].size()
output_item.append(F.upsample(input[i][j], size=(h,w), mode='bilinear', align_corners=True))
output.append(output_item)
output.append(input[-1])
return output
def scale_tensor_list_0(input,base_input):
output = []
assert len(input) == len(base_input)
for j in range(len(input)):
_, _, h, w = base_input[j].size()
after_size = F.upsample(input[j], size=(h,w), mode='bilinear', align_corners=True)
base_input[j] = base_input[j] + after_size
# output.append(output_item)
# output.append(input[-1])
return base_input
if __name__ == '__main__':
print(lr_poly(0.007,iter_=99,max_iter=150)) |