File size: 5,158 Bytes
8a6df40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import numpy as np
from PIL import Image


def main():
    image_paths, label_paths = init_path()
    hist = compute_hist(image_paths, label_paths)
    show_result(hist)


def init_path():
    list_file = './human/list/val_id.txt'
    file_names = []
    with open(list_file, 'rb') as f:
        for fn in f:
            file_names.append(fn.strip())

    image_dir = './human/features/attention/val/results/'
    label_dir = './human/data/labels/'

    image_paths = []
    label_paths = []
    for file_name in file_names:
        image_paths.append(os.path.join(image_dir, file_name + '.png'))
        label_paths.append(os.path.join(label_dir, file_name + '.png'))
    return image_paths, label_paths


def fast_hist(lbl, pred, n_cls):
    '''
    compute the miou
    :param lbl: label
    :param pred: output
    :param n_cls: num of class
    :return:
    '''
    # print(n_cls)
    k = (lbl >= 0) & (lbl < n_cls)
    return np.bincount(n_cls * lbl[k].astype(int) + pred[k], minlength=n_cls ** 2).reshape(n_cls, n_cls)


def compute_hist(images, labels,n_cls=20):
    hist = np.zeros((n_cls, n_cls))
    for img_path, label_path in zip(images, labels):
        label = Image.open(label_path)
        label_array = np.array(label, dtype=np.int32)
        image = Image.open(img_path)
        image_array = np.array(image, dtype=np.int32)

        gtsz = label_array.shape
        imgsz = image_array.shape
        if not gtsz == imgsz:
            image = image.resize((gtsz[1], gtsz[0]), Image.ANTIALIAS)
            image_array = np.array(image, dtype=np.int32)

        hist += fast_hist(label_array, image_array, n_cls)

    return hist


def show_result(hist):
    classes = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes',
               'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt',
               'face', 'leftArm', 'rightArm', 'leftLeg', 'rightLeg', 'leftShoe',
               'rightShoe']
    # num of correct pixels
    num_cor_pix = np.diag(hist)
    # num of gt pixels
    num_gt_pix = hist.sum(1)
    print('=' * 50)

    # @evaluation 1: overall accuracy
    acc = num_cor_pix.sum() / hist.sum()
    print('>>>', 'overall accuracy', acc)
    print('-' * 50)

    # @evaluation 2: mean accuracy & per-class accuracy
    print('Accuracy for each class (pixel accuracy):')
    for i in range(20):
        print('%-15s: %f' % (classes[i], num_cor_pix[i] / num_gt_pix[i]))
    acc = num_cor_pix / num_gt_pix
    print('>>>', 'mean accuracy', np.nanmean(acc))
    print('-' * 50)

    # @evaluation 3: mean IU & per-class IU
    union = num_gt_pix + hist.sum(0) - num_cor_pix
    for i in range(20):
        print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i]))
    iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix)
    print('>>>', 'mean IU', np.nanmean(iu))
    print('-' * 50)

    # @evaluation 4: frequency weighted IU
    freq = num_gt_pix / hist.sum()
    print('>>>', 'fwavacc', (freq[freq > 0] * iu[freq > 0]).sum())
    print('=' * 50)

def get_iou(pred,lbl,n_cls):
    '''
    need tensor cpu
    :param pred:
    :param lbl:
    :param n_cls:
    :return:
    '''
    hist = np.zeros((n_cls,n_cls))
    for i,j in zip(range(pred.size(0)),range(lbl.size(0))):
        pred_item = pred[i].data.numpy()
        lbl_item = lbl[j].data.numpy()
        hist += fast_hist(lbl_item, pred_item, n_cls)
    # num of correct pixels
    num_cor_pix = np.diag(hist)
    # num of gt pixels
    num_gt_pix = hist.sum(1)
    union = num_gt_pix + hist.sum(0) - num_cor_pix
    # for i in range(20):
    #     print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i]))
    iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix)
    print('>>>', 'mean IU', np.nanmean(iu))
    miou = np.nanmean(iu)
    print('-' * 50)
    return miou

def get_iou_from_list(pred,lbl,n_cls):
    '''
    need tensor cpu
    :param pred: list
    :param lbl: list
    :param n_cls:
    :return:
    '''
    hist = np.zeros((n_cls,n_cls))
    for i,j in zip(range(len(pred)),range(len(lbl))):
        pred_item = pred[i].data.numpy()
        lbl_item = lbl[j].data.numpy()
        # print(pred_item.shape,lbl_item.shape)
        hist += fast_hist(lbl_item, pred_item, n_cls)

    # num of correct pixels
    num_cor_pix = np.diag(hist)
    # num of gt pixels
    num_gt_pix = hist.sum(1)
    union = num_gt_pix + hist.sum(0) - num_cor_pix
    # for i in range(20):
    acc = num_cor_pix.sum() / hist.sum()
    print('>>>', 'overall accuracy', acc)
    print('-' * 50)
    #     print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i]))
    iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix)
    print('>>>', 'mean IU', np.nanmean(iu))
    miou = np.nanmean(iu)
    print('-' * 50)

    acc = num_cor_pix / num_gt_pix
    print('>>>', 'mean accuracy', np.nanmean(acc))
    print('-' * 50)

    return miou


if __name__ == '__main__':
    import torch
    pred = torch.autograd.Variable(torch.ones((2,1,32,32)).int())*20
    pred2 = torch.autograd.Variable(torch.zeros((2,1, 32, 32)).int())
    # lbl = [torch.zeros((32,32)).int() for _ in range(len(pred))]
    get_iou(pred,pred2,7)