File size: 13,528 Bytes
8a6df40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import socket
import timeit
from datetime import datetime
import os
import sys
import glob
import numpy as np
from collections import OrderedDict
sys.path.append('../../')
sys.path.append('../../networks/')
# PyTorch includes
import torch
from torch.autograd import Variable
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import make_grid


# Tensorboard include
from tensorboardX import SummaryWriter

# Custom includes
from dataloaders import cihp
from utils import util,get_iou_from_list
from networks import deeplab_xception_transfer, graph
from dataloaders import custom_transforms as tr

#
import argparse

gpu_id = 0

nEpochs = 100  # Number of epochs for training
resume_epoch = 0   # Default is 0, change if want to resume

def flip(x, dim):
    indices = [slice(None)] * x.dim()
    indices[dim] = torch.arange(x.size(dim) - 1, -1, -1,
                                dtype=torch.long, device=x.device)
    return x[tuple(indices)]

def flip_cihp(tail_list):
    '''

    :param tail_list: tail_list size is 1 x n_class x h x w
    :return:
    '''
    # tail_list = tail_list[0]
    tail_list_rev = [None] * 20
    for xx in range(14):
        tail_list_rev[xx] = tail_list[xx].unsqueeze(0)
    tail_list_rev[14] = tail_list[15].unsqueeze(0)
    tail_list_rev[15] = tail_list[14].unsqueeze(0)
    tail_list_rev[16] = tail_list[17].unsqueeze(0)
    tail_list_rev[17] = tail_list[16].unsqueeze(0)
    tail_list_rev[18] = tail_list[19].unsqueeze(0)
    tail_list_rev[19] = tail_list[18].unsqueeze(0)
    return torch.cat(tail_list_rev,dim=0)

def get_parser():
    '''argparse begin'''
    parser = argparse.ArgumentParser()
    LookupChoices = type('', (argparse.Action,), dict(__call__=lambda a, p, n, v, o: setattr(n, a.dest, a.choices[v])))

    parser.add_argument('--epochs', default=100, type=int)
    parser.add_argument('--batch', default=16, type=int)
    parser.add_argument('--lr', default=1e-7, type=float)
    parser.add_argument('--numworker',default=12,type=int)
    parser.add_argument('--freezeBN', choices=dict(true=True, false=False), default=True, action=LookupChoices)
    parser.add_argument('--step', default=10, type=int)
    parser.add_argument('--classes', default=20, type=int)
    parser.add_argument('--testInterval', default=10, type=int)
    parser.add_argument('--loadmodel',default='',type=str)
    parser.add_argument('--pretrainedModel', default='', type=str)
    parser.add_argument('--hidden_layers',default=128,type=int)
    parser.add_argument('--gpus',default=4, type=int)

    opts = parser.parse_args()
    return opts

def get_graphs(opts):
    adj2_ = torch.from_numpy(graph.cihp2pascal_nlp_adj).float()
    adj2 = adj2_.unsqueeze(0).unsqueeze(0).expand(opts.gpus, 1, 7, 20).transpose(2, 3).cuda()
    adj2_test = adj2_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 20).transpose(2, 3)

    adj1_ = Variable(torch.from_numpy(graph.preprocess_adj(graph.pascal_graph)).float())
    adj3 = adj1_.unsqueeze(0).unsqueeze(0).expand(opts.gpus, 1, 7, 7).cuda()
    adj3_test = adj1_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 7)

    # adj2 = torch.from_numpy(graph.cihp2pascal_adj).float()
    # adj2 = adj2.unsqueeze(0).unsqueeze(0).expand(opts.gpus, 1, 7, 20)
    cihp_adj = graph.preprocess_adj(graph.cihp_graph)
    adj3_ = Variable(torch.from_numpy(cihp_adj).float())
    adj1 = adj3_.unsqueeze(0).unsqueeze(0).expand(opts.gpus, 1, 20, 20).cuda()
    adj1_test = adj3_.unsqueeze(0).unsqueeze(0).expand(1, 1, 20, 20)
    train_graph = [adj1, adj2, adj3]
    test_graph = [adj1_test, adj2_test, adj3_test]
    return train_graph, test_graph


def val_cihp(net_, testloader, testloader_flip, test_graph, epoch, writer, criterion, classes=20):
    adj1_test, adj2_test, adj3_test = test_graph
    num_img_ts = len(testloader)
    net_.eval()
    pred_list = []
    label_list = []
    running_loss_ts = 0.0
    miou = 0
    for ii, sample_batched in enumerate(zip(testloader, testloader_flip)):

        inputs, labels = sample_batched[0]['image'], sample_batched[0]['label']
        inputs_f, _ = sample_batched[1]['image'], sample_batched[1]['label']
        inputs = torch.cat((inputs, inputs_f), dim=0)
        # Forward pass of the mini-batch
        inputs, labels = Variable(inputs, requires_grad=False), Variable(labels)
        if gpu_id >= 0:
            inputs, labels = inputs.cuda(), labels.cuda()

        with torch.no_grad():
            outputs = net_.forward(inputs, adj1_test.cuda(), adj3_test.cuda(), adj2_test.cuda())
        # pdb.set_trace()
        outputs = (outputs[0] + flip(flip_cihp(outputs[1]), dim=-1)) / 2
        outputs = outputs.unsqueeze(0)
        predictions = torch.max(outputs, 1)[1]
        pred_list.append(predictions.cpu())
        label_list.append(labels.squeeze(1).cpu())
        loss = criterion(outputs, labels, batch_average=True)
        running_loss_ts += loss.item()
        # total_iou += utils.get_iou(predictions, labels)
        # Print stuff
        if ii % num_img_ts == num_img_ts - 1:
            # if ii == 10:
            miou = get_iou_from_list(pred_list, label_list, n_cls=classes)
            running_loss_ts = running_loss_ts / num_img_ts

            print('Validation:')
            print('[Epoch: %d, numImages: %5d]' % (epoch, ii * 1 + inputs.data.shape[0]))
            writer.add_scalar('data/test_loss_epoch', running_loss_ts, epoch)
            writer.add_scalar('data/test_miour', miou, epoch)
            print('Loss: %f' % running_loss_ts)
            print('MIoU: %f\n' % miou)


def main(opts):
    p = OrderedDict()  # Parameters to include in report
    p['trainBatch'] = opts.batch  # Training batch size
    testBatch = 1  # Testing batch size
    useTest = True  # See evolution of the test set when training
    nTestInterval = opts.testInterval # Run on test set every nTestInterval epochs
    snapshot = 1  # Store a model every snapshot epochs
    p['nAveGrad'] = 1  # Average the gradient of several iterations
    p['lr'] = opts.lr  # Learning rate
    p['lrFtr'] = 1e-5
    p['lraspp'] = 1e-5
    p['lrpro'] = 1e-5
    p['lrdecoder'] = 1e-5
    p['lrother']  = 1e-5
    p['wd'] = 5e-4  # Weight decay
    p['momentum'] = 0.9  # Momentum
    p['epoch_size'] = opts.step  # How many epochs to change learning rate
    p['num_workers'] = opts.numworker
    model_path = opts.pretrainedModel
    backbone = 'xception' # Use xception or resnet as feature extractor,
    nEpochs = opts.epochs

    max_id = 0
    save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__)))
    exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1]
    runs = glob.glob(os.path.join(save_dir_root, 'run_cihp', 'run_*'))
    for r in runs:
        run_id = int(r.split('_')[-1])
        if run_id >= max_id:
            max_id = run_id + 1
    save_dir = os.path.join(save_dir_root, 'run_cihp', 'run_' + str(max_id))

    # Network definition
    if backbone == 'xception':
        net_ = deeplab_xception_transfer.deeplab_xception_transfer_projection_savemem(n_classes=opts.classes, os=16,
                                                                                      hidden_layers=opts.hidden_layers, source_classes=7, )
    elif backbone == 'resnet':
        # net_ = deeplab_resnet.DeepLabv3_plus(nInputChannels=3, n_classes=7, os=16, pretrained=True)
        raise NotImplementedError
    else:
        raise NotImplementedError

    modelName = 'deeplabv3plus-' + backbone + '-voc'+datetime.now().strftime('%b%d_%H-%M-%S')
    criterion = util.cross_entropy2d

    if gpu_id >= 0:
        # torch.cuda.set_device(device=gpu_id)
        net_.cuda()

    # net load weights
    if not model_path == '':
        x = torch.load(model_path)
        net_.load_state_dict_new(x)
        print('load pretrainedModel:', model_path)
    else:
        print('no pretrainedModel.')
    if not opts.loadmodel =='':
        x = torch.load(opts.loadmodel)
        net_.load_source_model(x)
        print('load model:' ,opts.loadmodel)
    else:
        print('no model load !!!!!!!!')

    log_dir = os.path.join(save_dir, 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname())
    writer = SummaryWriter(log_dir=log_dir)
    writer.add_text('load model',opts.loadmodel,1)
    writer.add_text('setting',sys.argv[0],1)

    if opts.freezeBN:
        net_.freeze_bn()

    # Use the following optimizer
    optimizer = optim.SGD(net_.parameters(), lr=p['lr'], momentum=p['momentum'], weight_decay=p['wd'])

    composed_transforms_tr = transforms.Compose([
            tr.RandomSized_new(512),
            tr.Normalize_xception_tf(),
            tr.ToTensor_()])

    composed_transforms_ts = transforms.Compose([
        tr.Normalize_xception_tf(),
        tr.ToTensor_()])

    composed_transforms_ts_flip = transforms.Compose([
        tr.HorizontalFlip(),
        tr.Normalize_xception_tf(),
        tr.ToTensor_()])

    voc_train = cihp.VOCSegmentation(split='train', transform=composed_transforms_tr, flip=True)
    voc_val = cihp.VOCSegmentation(split='val', transform=composed_transforms_ts)
    voc_val_flip = cihp.VOCSegmentation(split='val', transform=composed_transforms_ts_flip)

    trainloader = DataLoader(voc_train, batch_size=p['trainBatch'], shuffle=True, num_workers=p['num_workers'],drop_last=True)
    testloader = DataLoader(voc_val, batch_size=testBatch, shuffle=False, num_workers=p['num_workers'])
    testloader_flip = DataLoader(voc_val_flip, batch_size=testBatch, shuffle=False, num_workers=p['num_workers'])

    num_img_tr = len(trainloader)
    num_img_ts = len(testloader)
    running_loss_tr = 0.0
    running_loss_ts = 0.0
    aveGrad = 0
    global_step = 0
    print("Training Network")

    net = torch.nn.DataParallel(net_)
    train_graph, test_graph = get_graphs(opts)
    adj1, adj2, adj3 = train_graph


    # Main Training and Testing Loop
    for epoch in range(resume_epoch, nEpochs):
        start_time = timeit.default_timer()

        if epoch % p['epoch_size'] == p['epoch_size'] - 1:
            lr_ = util.lr_poly(p['lr'], epoch, nEpochs, 0.9)
            optimizer = optim.SGD(net_.parameters(), lr=lr_, momentum=p['momentum'], weight_decay=p['wd'])
            writer.add_scalar('data/lr_', lr_, epoch)
            print('(poly lr policy) learning rate: ', lr_)

        net.train()
        for ii, sample_batched in enumerate(trainloader):

            inputs, labels = sample_batched['image'], sample_batched['label']
            # Forward-Backward of the mini-batch
            inputs, labels = Variable(inputs, requires_grad=True), Variable(labels)
            global_step += inputs.data.shape[0]

            if gpu_id >= 0:
                inputs, labels = inputs.cuda(), labels.cuda()

            outputs = net.forward(inputs, adj1, adj3, adj2)

            loss = criterion(outputs, labels, batch_average=True)
            running_loss_tr += loss.item()

            # Print stuff
            if ii % num_img_tr == (num_img_tr - 1):
                running_loss_tr = running_loss_tr / num_img_tr
                writer.add_scalar('data/total_loss_epoch', running_loss_tr, epoch)
                print('[Epoch: %d, numImages: %5d]' % (epoch, ii * p['trainBatch'] + inputs.data.shape[0]))
                print('Loss: %f' % running_loss_tr)
                running_loss_tr = 0
                stop_time = timeit.default_timer()
                print("Execution time: " + str(stop_time - start_time) + "\n")

            # Backward the averaged gradient
            loss /= p['nAveGrad']
            loss.backward()
            aveGrad += 1

            # Update the weights once in p['nAveGrad'] forward passes
            if aveGrad % p['nAveGrad'] == 0:
                writer.add_scalar('data/total_loss_iter', loss.item(), ii + num_img_tr * epoch)
                optimizer.step()
                optimizer.zero_grad()
                aveGrad = 0

            # Show 10 * 3 images results each epoch
            if ii % (num_img_tr // 10) == 0:
                grid_image = make_grid(inputs[:3].clone().cpu().data, 3, normalize=True)
                writer.add_image('Image', grid_image, global_step)
                grid_image = make_grid(util.decode_seg_map_sequence(torch.max(outputs[:3], 1)[1].detach().cpu().numpy()), 3, normalize=False,
                                       range=(0, 255))
                writer.add_image('Predicted label', grid_image, global_step)
                grid_image = make_grid(util.decode_seg_map_sequence(torch.squeeze(labels[:3], 1).detach().cpu().numpy()), 3, normalize=False, range=(0, 255))
                writer.add_image('Groundtruth label', grid_image, global_step)
            print('loss is ', loss.cpu().item(), flush=True)

        # Save the model
        if (epoch % snapshot) == snapshot - 1:
            torch.save(net_.state_dict(), os.path.join(save_dir, 'models', modelName + '_epoch-' + str(epoch) + '.pth'))
            print("Save model at {}\n".format(os.path.join(save_dir, 'models', modelName + '_epoch-' + str(epoch) + '.pth')))

        torch.cuda.empty_cache()

        # One testing epoch
        if useTest and epoch % nTestInterval == (nTestInterval - 1):
            val_cihp(net_,testloader=testloader, testloader_flip=testloader_flip, test_graph=test_graph,
                     epoch=epoch,writer=writer,criterion=criterion, classes=opts.classes)
        torch.cuda.empty_cache()




if __name__ == '__main__':
    opts = get_parser()
    main(opts)