Spaces:
Running
Running
File size: 13,528 Bytes
8a6df40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import socket
import timeit
from datetime import datetime
import os
import sys
import glob
import numpy as np
from collections import OrderedDict
sys.path.append('../../')
sys.path.append('../../networks/')
# PyTorch includes
import torch
from torch.autograd import Variable
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
# Tensorboard include
from tensorboardX import SummaryWriter
# Custom includes
from dataloaders import cihp
from utils import util,get_iou_from_list
from networks import deeplab_xception_transfer, graph
from dataloaders import custom_transforms as tr
#
import argparse
gpu_id = 0
nEpochs = 100 # Number of epochs for training
resume_epoch = 0 # Default is 0, change if want to resume
def flip(x, dim):
indices = [slice(None)] * x.dim()
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1,
dtype=torch.long, device=x.device)
return x[tuple(indices)]
def flip_cihp(tail_list):
'''
:param tail_list: tail_list size is 1 x n_class x h x w
:return:
'''
# tail_list = tail_list[0]
tail_list_rev = [None] * 20
for xx in range(14):
tail_list_rev[xx] = tail_list[xx].unsqueeze(0)
tail_list_rev[14] = tail_list[15].unsqueeze(0)
tail_list_rev[15] = tail_list[14].unsqueeze(0)
tail_list_rev[16] = tail_list[17].unsqueeze(0)
tail_list_rev[17] = tail_list[16].unsqueeze(0)
tail_list_rev[18] = tail_list[19].unsqueeze(0)
tail_list_rev[19] = tail_list[18].unsqueeze(0)
return torch.cat(tail_list_rev,dim=0)
def get_parser():
'''argparse begin'''
parser = argparse.ArgumentParser()
LookupChoices = type('', (argparse.Action,), dict(__call__=lambda a, p, n, v, o: setattr(n, a.dest, a.choices[v])))
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--batch', default=16, type=int)
parser.add_argument('--lr', default=1e-7, type=float)
parser.add_argument('--numworker',default=12,type=int)
parser.add_argument('--freezeBN', choices=dict(true=True, false=False), default=True, action=LookupChoices)
parser.add_argument('--step', default=10, type=int)
parser.add_argument('--classes', default=20, type=int)
parser.add_argument('--testInterval', default=10, type=int)
parser.add_argument('--loadmodel',default='',type=str)
parser.add_argument('--pretrainedModel', default='', type=str)
parser.add_argument('--hidden_layers',default=128,type=int)
parser.add_argument('--gpus',default=4, type=int)
opts = parser.parse_args()
return opts
def get_graphs(opts):
adj2_ = torch.from_numpy(graph.cihp2pascal_nlp_adj).float()
adj2 = adj2_.unsqueeze(0).unsqueeze(0).expand(opts.gpus, 1, 7, 20).transpose(2, 3).cuda()
adj2_test = adj2_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 20).transpose(2, 3)
adj1_ = Variable(torch.from_numpy(graph.preprocess_adj(graph.pascal_graph)).float())
adj3 = adj1_.unsqueeze(0).unsqueeze(0).expand(opts.gpus, 1, 7, 7).cuda()
adj3_test = adj1_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 7)
# adj2 = torch.from_numpy(graph.cihp2pascal_adj).float()
# adj2 = adj2.unsqueeze(0).unsqueeze(0).expand(opts.gpus, 1, 7, 20)
cihp_adj = graph.preprocess_adj(graph.cihp_graph)
adj3_ = Variable(torch.from_numpy(cihp_adj).float())
adj1 = adj3_.unsqueeze(0).unsqueeze(0).expand(opts.gpus, 1, 20, 20).cuda()
adj1_test = adj3_.unsqueeze(0).unsqueeze(0).expand(1, 1, 20, 20)
train_graph = [adj1, adj2, adj3]
test_graph = [adj1_test, adj2_test, adj3_test]
return train_graph, test_graph
def val_cihp(net_, testloader, testloader_flip, test_graph, epoch, writer, criterion, classes=20):
adj1_test, adj2_test, adj3_test = test_graph
num_img_ts = len(testloader)
net_.eval()
pred_list = []
label_list = []
running_loss_ts = 0.0
miou = 0
for ii, sample_batched in enumerate(zip(testloader, testloader_flip)):
inputs, labels = sample_batched[0]['image'], sample_batched[0]['label']
inputs_f, _ = sample_batched[1]['image'], sample_batched[1]['label']
inputs = torch.cat((inputs, inputs_f), dim=0)
# Forward pass of the mini-batch
inputs, labels = Variable(inputs, requires_grad=False), Variable(labels)
if gpu_id >= 0:
inputs, labels = inputs.cuda(), labels.cuda()
with torch.no_grad():
outputs = net_.forward(inputs, adj1_test.cuda(), adj3_test.cuda(), adj2_test.cuda())
# pdb.set_trace()
outputs = (outputs[0] + flip(flip_cihp(outputs[1]), dim=-1)) / 2
outputs = outputs.unsqueeze(0)
predictions = torch.max(outputs, 1)[1]
pred_list.append(predictions.cpu())
label_list.append(labels.squeeze(1).cpu())
loss = criterion(outputs, labels, batch_average=True)
running_loss_ts += loss.item()
# total_iou += utils.get_iou(predictions, labels)
# Print stuff
if ii % num_img_ts == num_img_ts - 1:
# if ii == 10:
miou = get_iou_from_list(pred_list, label_list, n_cls=classes)
running_loss_ts = running_loss_ts / num_img_ts
print('Validation:')
print('[Epoch: %d, numImages: %5d]' % (epoch, ii * 1 + inputs.data.shape[0]))
writer.add_scalar('data/test_loss_epoch', running_loss_ts, epoch)
writer.add_scalar('data/test_miour', miou, epoch)
print('Loss: %f' % running_loss_ts)
print('MIoU: %f\n' % miou)
def main(opts):
p = OrderedDict() # Parameters to include in report
p['trainBatch'] = opts.batch # Training batch size
testBatch = 1 # Testing batch size
useTest = True # See evolution of the test set when training
nTestInterval = opts.testInterval # Run on test set every nTestInterval epochs
snapshot = 1 # Store a model every snapshot epochs
p['nAveGrad'] = 1 # Average the gradient of several iterations
p['lr'] = opts.lr # Learning rate
p['lrFtr'] = 1e-5
p['lraspp'] = 1e-5
p['lrpro'] = 1e-5
p['lrdecoder'] = 1e-5
p['lrother'] = 1e-5
p['wd'] = 5e-4 # Weight decay
p['momentum'] = 0.9 # Momentum
p['epoch_size'] = opts.step # How many epochs to change learning rate
p['num_workers'] = opts.numworker
model_path = opts.pretrainedModel
backbone = 'xception' # Use xception or resnet as feature extractor,
nEpochs = opts.epochs
max_id = 0
save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__)))
exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1]
runs = glob.glob(os.path.join(save_dir_root, 'run_cihp', 'run_*'))
for r in runs:
run_id = int(r.split('_')[-1])
if run_id >= max_id:
max_id = run_id + 1
save_dir = os.path.join(save_dir_root, 'run_cihp', 'run_' + str(max_id))
# Network definition
if backbone == 'xception':
net_ = deeplab_xception_transfer.deeplab_xception_transfer_projection_savemem(n_classes=opts.classes, os=16,
hidden_layers=opts.hidden_layers, source_classes=7, )
elif backbone == 'resnet':
# net_ = deeplab_resnet.DeepLabv3_plus(nInputChannels=3, n_classes=7, os=16, pretrained=True)
raise NotImplementedError
else:
raise NotImplementedError
modelName = 'deeplabv3plus-' + backbone + '-voc'+datetime.now().strftime('%b%d_%H-%M-%S')
criterion = util.cross_entropy2d
if gpu_id >= 0:
# torch.cuda.set_device(device=gpu_id)
net_.cuda()
# net load weights
if not model_path == '':
x = torch.load(model_path)
net_.load_state_dict_new(x)
print('load pretrainedModel:', model_path)
else:
print('no pretrainedModel.')
if not opts.loadmodel =='':
x = torch.load(opts.loadmodel)
net_.load_source_model(x)
print('load model:' ,opts.loadmodel)
else:
print('no model load !!!!!!!!')
log_dir = os.path.join(save_dir, 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname())
writer = SummaryWriter(log_dir=log_dir)
writer.add_text('load model',opts.loadmodel,1)
writer.add_text('setting',sys.argv[0],1)
if opts.freezeBN:
net_.freeze_bn()
# Use the following optimizer
optimizer = optim.SGD(net_.parameters(), lr=p['lr'], momentum=p['momentum'], weight_decay=p['wd'])
composed_transforms_tr = transforms.Compose([
tr.RandomSized_new(512),
tr.Normalize_xception_tf(),
tr.ToTensor_()])
composed_transforms_ts = transforms.Compose([
tr.Normalize_xception_tf(),
tr.ToTensor_()])
composed_transforms_ts_flip = transforms.Compose([
tr.HorizontalFlip(),
tr.Normalize_xception_tf(),
tr.ToTensor_()])
voc_train = cihp.VOCSegmentation(split='train', transform=composed_transforms_tr, flip=True)
voc_val = cihp.VOCSegmentation(split='val', transform=composed_transforms_ts)
voc_val_flip = cihp.VOCSegmentation(split='val', transform=composed_transforms_ts_flip)
trainloader = DataLoader(voc_train, batch_size=p['trainBatch'], shuffle=True, num_workers=p['num_workers'],drop_last=True)
testloader = DataLoader(voc_val, batch_size=testBatch, shuffle=False, num_workers=p['num_workers'])
testloader_flip = DataLoader(voc_val_flip, batch_size=testBatch, shuffle=False, num_workers=p['num_workers'])
num_img_tr = len(trainloader)
num_img_ts = len(testloader)
running_loss_tr = 0.0
running_loss_ts = 0.0
aveGrad = 0
global_step = 0
print("Training Network")
net = torch.nn.DataParallel(net_)
train_graph, test_graph = get_graphs(opts)
adj1, adj2, adj3 = train_graph
# Main Training and Testing Loop
for epoch in range(resume_epoch, nEpochs):
start_time = timeit.default_timer()
if epoch % p['epoch_size'] == p['epoch_size'] - 1:
lr_ = util.lr_poly(p['lr'], epoch, nEpochs, 0.9)
optimizer = optim.SGD(net_.parameters(), lr=lr_, momentum=p['momentum'], weight_decay=p['wd'])
writer.add_scalar('data/lr_', lr_, epoch)
print('(poly lr policy) learning rate: ', lr_)
net.train()
for ii, sample_batched in enumerate(trainloader):
inputs, labels = sample_batched['image'], sample_batched['label']
# Forward-Backward of the mini-batch
inputs, labels = Variable(inputs, requires_grad=True), Variable(labels)
global_step += inputs.data.shape[0]
if gpu_id >= 0:
inputs, labels = inputs.cuda(), labels.cuda()
outputs = net.forward(inputs, adj1, adj3, adj2)
loss = criterion(outputs, labels, batch_average=True)
running_loss_tr += loss.item()
# Print stuff
if ii % num_img_tr == (num_img_tr - 1):
running_loss_tr = running_loss_tr / num_img_tr
writer.add_scalar('data/total_loss_epoch', running_loss_tr, epoch)
print('[Epoch: %d, numImages: %5d]' % (epoch, ii * p['trainBatch'] + inputs.data.shape[0]))
print('Loss: %f' % running_loss_tr)
running_loss_tr = 0
stop_time = timeit.default_timer()
print("Execution time: " + str(stop_time - start_time) + "\n")
# Backward the averaged gradient
loss /= p['nAveGrad']
loss.backward()
aveGrad += 1
# Update the weights once in p['nAveGrad'] forward passes
if aveGrad % p['nAveGrad'] == 0:
writer.add_scalar('data/total_loss_iter', loss.item(), ii + num_img_tr * epoch)
optimizer.step()
optimizer.zero_grad()
aveGrad = 0
# Show 10 * 3 images results each epoch
if ii % (num_img_tr // 10) == 0:
grid_image = make_grid(inputs[:3].clone().cpu().data, 3, normalize=True)
writer.add_image('Image', grid_image, global_step)
grid_image = make_grid(util.decode_seg_map_sequence(torch.max(outputs[:3], 1)[1].detach().cpu().numpy()), 3, normalize=False,
range=(0, 255))
writer.add_image('Predicted label', grid_image, global_step)
grid_image = make_grid(util.decode_seg_map_sequence(torch.squeeze(labels[:3], 1).detach().cpu().numpy()), 3, normalize=False, range=(0, 255))
writer.add_image('Groundtruth label', grid_image, global_step)
print('loss is ', loss.cpu().item(), flush=True)
# Save the model
if (epoch % snapshot) == snapshot - 1:
torch.save(net_.state_dict(), os.path.join(save_dir, 'models', modelName + '_epoch-' + str(epoch) + '.pth'))
print("Save model at {}\n".format(os.path.join(save_dir, 'models', modelName + '_epoch-' + str(epoch) + '.pth')))
torch.cuda.empty_cache()
# One testing epoch
if useTest and epoch % nTestInterval == (nTestInterval - 1):
val_cihp(net_,testloader=testloader, testloader_flip=testloader_flip, test_graph=test_graph,
epoch=epoch,writer=writer,criterion=criterion, classes=opts.classes)
torch.cuda.empty_cache()
if __name__ == '__main__':
opts = get_parser()
main(opts) |