File size: 608 Bytes
a3eeec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import streamlit as st

# Sentiment analysis function
def analyze_sentiment(text, model):
    if model == "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual":
        classifier = pipeline("sentiment-analysis", model=model)
        result = classifier(text)[0]
        sentiment = result['label']
        score = result['score']
    return sentiment, score

# Buat button analyze yang melaukan perintah sebagai berikut
if st.button("Analyze"):
    sentiment, score = analyze_sentiment(text, model)
    st.write(f"Sentiment: {sentiment}")
    if score is not None:
        st.write(f"Score: {score}")