File size: 901 Bytes
2cec43b
 
 
 
 
552acce
2cec43b
 
 
 
552acce
 
2cec43b
 
 
3c12279
2cec43b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import streamlit as st
from transformers import pipeline

# title
st.title("Sentiment Analysis App")
st.markdown("You can input 8 different language: arabic, english, french, german, hindi, italian,  portuguese, spanish")

# text input
text = st.text_input("Enter text here", "I love you")

# Model initiate
model = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"

# Sentiment analysis function
def analyze_sentiment(text, model):
    if model == "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual":
        classifier = pipeline("sentiment-analysis", model=model)
        result = classifier(text)[0]
        sentiment = result['label']
        score = result['score']
    return sentiment, score

if st.button("Analyze"):
    sentiment, score = analyze_sentiment(text, model)
    st.write(f"Sentiment: {sentiment}")
    if score is not None:
        st.write(f"Score: {score}")