Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- .gitattributes +2 -0
- ProjectAkhir.py +150 -0
- Proyek_Tugas_Akhir.ipynb +0 -0
- all_dataset.csv +3 -0
- erica-zhou-IHpUgFDn7zU-unsplash.jpg +3 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
all_dataset.csv filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
erica-zhou-IHpUgFDn7zU-unsplash.jpg filter=lfs diff=lfs merge=lfs -text
|
ProjectAkhir.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mengimpor seluruh library
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import seaborn as sns
|
| 5 |
+
import streamlit as st
|
| 6 |
+
from babel.numbers import format_currency
|
| 7 |
+
sns.set(style='dark')
|
| 8 |
+
|
| 9 |
+
# create_daily_orders() digunakan untuk menyiapkan daily_orders
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def create_orders_daily(df):
|
| 13 |
+
create_orders_daily = df.resample(rule='M', on='order_approved_at').agg({
|
| 14 |
+
"order_id": "nunique",
|
| 15 |
+
"price": "sum"
|
| 16 |
+
})
|
| 17 |
+
create_orders_daily.index = create_orders_daily.index.strftime(
|
| 18 |
+
'%Y-%m-%d') # mengubah format order date menjadi nama bulan
|
| 19 |
+
create_orders_daily = create_orders_daily.reset_index()
|
| 20 |
+
create_orders_daily.rename(columns={
|
| 21 |
+
"order_id": "order_count",
|
| 22 |
+
"price": "revenue"
|
| 23 |
+
}, inplace=True)
|
| 24 |
+
|
| 25 |
+
return create_orders_daily
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# create_sum_order() untuk menyiapkan sum_orders
|
| 29 |
+
def create_sum_order(df):
|
| 30 |
+
sum_order = df.groupby("product_category_name").product_id.nunique(
|
| 31 |
+
).sort_values(ascending=False).reset_index()
|
| 32 |
+
return sum_order
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# create_state() digunakan untuk menyiapkan state
|
| 36 |
+
def create_state(df):
|
| 37 |
+
state = df.groupby(
|
| 38 |
+
by="customer_city").product_id.nunique().reset_index()
|
| 39 |
+
|
| 40 |
+
return state
|
| 41 |
+
|
| 42 |
+
# create_order_status() digunakan untuk menyiapkan order_statuse
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def create_order_status(df):
|
| 46 |
+
order_status = df.groupby(
|
| 47 |
+
by="order_status").product_id.nunique().reset_index()
|
| 48 |
+
|
| 49 |
+
return order_status
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Menyimpan berkas data dari google colba.
|
| 53 |
+
all_dataset = pd.read_csv("all_dataset.csv")
|
| 54 |
+
|
| 55 |
+
# Filter untuk kolom order_approved_at dan order_status
|
| 56 |
+
datetime_columns = ["order_approved_at", "order_status"]
|
| 57 |
+
all_dataset.sort_values(by="order_approved_at", inplace=True)
|
| 58 |
+
all_dataset.reset_index(inplace=True)
|
| 59 |
+
|
| 60 |
+
all_dataset_index = all_dataset.set_index('order_approved_at')
|
| 61 |
+
|
| 62 |
+
for column in datetime_columns:
|
| 63 |
+
all_dataset[column] = pd.to_datetime(all_dataset['order_approved_at'])
|
| 64 |
+
|
| 65 |
+
# membuat filter dengan widget date input serta menambahkan logo perusahaan pada sidebar
|
| 66 |
+
min_date = all_dataset["order_approved_at"].min()
|
| 67 |
+
max_date = all_dataset["order_approved_at"].max()
|
| 68 |
+
|
| 69 |
+
with st.sidebar:
|
| 70 |
+
# Menambahkan logo perusahaan
|
| 71 |
+
st.title("Toko Kita")
|
| 72 |
+
st.image("https://raw.githubusercontent.com/MuhamdIlyas/ProjectDicodingDataScience/a773b6e2b6b6b1a890c7ccf635de83fc9b487de2/erica-zhou-IHpUgFDn7zU-unsplash.jpg",
|
| 73 |
+
width=None, use_column_width=None)
|
| 74 |
+
# https://unsplash.com/photos/IHpUgFDn7zU
|
| 75 |
+
|
| 76 |
+
# Mengambil start_date & end_date dari date_input
|
| 77 |
+
start_date, end_date = st.date_input(
|
| 78 |
+
label='Rentang Waktu', min_value=min_date,
|
| 79 |
+
max_value=max_date,
|
| 80 |
+
value=[min_date, max_date]
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# start_date dan end_date di atas akan digunakan untuk memfilter all_dataset. Data yang telah difilter ini selanjutnya akan disimpan dalam main_dataset
|
| 84 |
+
main_dataset = all_dataset[(all_dataset["order_approved_at"] >= str(start_date)) &
|
| 85 |
+
(all_dataset["order_approved_at"] <= str(end_date))]
|
| 86 |
+
|
| 87 |
+
daily_order = create_orders_daily(main_dataset)
|
| 88 |
+
sum_order = create_sum_order(main_dataset)
|
| 89 |
+
state = create_state(main_dataset)
|
| 90 |
+
order_status = create_order_status(main_dataset)
|
| 91 |
+
# rfm_df = create_rfm_df(main_dataset)
|
| 92 |
+
|
| 93 |
+
# Menambahkan Header
|
| 94 |
+
st.header('Toko Kita Dashboard :sparkles:')
|
| 95 |
+
|
| 96 |
+
# menampilkan informasi total order dan revenue dalam bentuk metric() yang ditampilkan menggunakan layout columns()
|
| 97 |
+
st.subheader('Daily Orders')
|
| 98 |
+
|
| 99 |
+
col1, col2 = st.columns(2)
|
| 100 |
+
|
| 101 |
+
with col1:
|
| 102 |
+
total_orders = daily_order.order_count.sum()
|
| 103 |
+
st.metric("Total orders", value=total_orders)
|
| 104 |
+
|
| 105 |
+
with col2:
|
| 106 |
+
total_revenue = format_currency(
|
| 107 |
+
daily_order.revenue.sum(), "AUD", locale='es_CO')
|
| 108 |
+
st.metric("Total Revenue", value=total_revenue)
|
| 109 |
+
|
| 110 |
+
# Perfoma penjualan
|
| 111 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
| 112 |
+
ax.plot(
|
| 113 |
+
daily_order["order_approved_at"].values,
|
| 114 |
+
daily_order["order_count"].values,
|
| 115 |
+
marker='o',
|
| 116 |
+
linewidth=2,
|
| 117 |
+
color="#90CAF9"
|
| 118 |
+
)
|
| 119 |
+
ax.tick_params(axis='y', labelsize=20)
|
| 120 |
+
ax.tick_params(axis='x', labelsize=15, rotation=45)
|
| 121 |
+
|
| 122 |
+
st.pyplot(fig)
|
| 123 |
+
|
| 124 |
+
# Menampilkan 5 produk paling laris dan paling sedikit terjual melalui sebuah visualisasi data
|
| 125 |
+
st.subheader("Best & Worst Performing Product")
|
| 126 |
+
|
| 127 |
+
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(35, 15))
|
| 128 |
+
|
| 129 |
+
colors = ["#90CAF9", "#D3D3D3", "#D3D3D3", "#D3D3D3", "#D3D3D3"]
|
| 130 |
+
|
| 131 |
+
sns.barplot(x="product_id", y="product_category_name",
|
| 132 |
+
data=sum_order.head(5), palette=colors, ax=ax[0])
|
| 133 |
+
ax[0].set_ylabel(None)
|
| 134 |
+
ax[0].set_xlabel(None, fontsize=30)
|
| 135 |
+
ax[0].set_title("Best Performing Product", loc="center", fontsize=50)
|
| 136 |
+
ax[0].tick_params(axis='y', labelsize=35)
|
| 137 |
+
ax[0].tick_params(axis='x', labelsize=30)
|
| 138 |
+
|
| 139 |
+
sns.barplot(x="product_id", y="product_category_name", data=sum_order.sort_values(
|
| 140 |
+
by="product_id", ascending=True).head(5), palette=colors, ax=ax[1])
|
| 141 |
+
ax[1].set_ylabel(None)
|
| 142 |
+
ax[1].set_xlabel(None, fontsize=30)
|
| 143 |
+
ax[1].invert_xaxis()
|
| 144 |
+
ax[1].yaxis.set_label_position("right")
|
| 145 |
+
ax[1].yaxis.tick_right()
|
| 146 |
+
ax[1].set_title("Worst Performing Product", loc="center", fontsize=50)
|
| 147 |
+
ax[1].tick_params(axis='y', labelsize=35)
|
| 148 |
+
ax[1].tick_params(axis='x', labelsize=30)
|
| 149 |
+
|
| 150 |
+
st.pyplot(fig)
|
Proyek_Tugas_Akhir.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
all_dataset.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcedf26d8a0e8103cca6d3d89cfc389797674eede60cd042b7713d96c01f47e3
|
| 3 |
+
size 50361516
|
erica-zhou-IHpUgFDn7zU-unsplash.jpg
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas==2.1.1
|
| 2 |
+
matplotlib==3.2.2
|
| 3 |
+
seaborn==0.11.2
|
| 4 |
+
streamlit==1.3.0
|
| 5 |
+
babel==2.13.0
|