Spaces:
Runtime error
Runtime error
nurindahpratiwi
commited on
Commit
·
933390a
1
Parent(s):
17b69a9
update
Browse files
app.py
CHANGED
|
@@ -7,11 +7,9 @@ import sklearn
|
|
| 7 |
import joblib
|
| 8 |
from PIL import Image
|
| 9 |
import base64
|
| 10 |
-
from transformers import pipeline
|
| 11 |
-
import datetime
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
|
| 14 |
-
REPO_ID = "
|
| 15 |
|
| 16 |
num_imputer = joblib.load(
|
| 17 |
hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib")
|
|
@@ -40,7 +38,6 @@ st.write("<center><h1>Sales Prediction App</h1></center>", unsafe_allow_html=Tru
|
|
| 40 |
col1, col2, col3 = st.columns([1, 3, 3])
|
| 41 |
|
| 42 |
|
| 43 |
-
#st.image("https://www.example.com/logo.png", width=200)
|
| 44 |
# Add a subtitle or description
|
| 45 |
st.write("This app uses machine learning to predict sales based on certain input parameters. Simply enter the required information and click 'Predict' to get a sales prediction!")
|
| 46 |
|
|
@@ -53,28 +50,25 @@ st.subheader("Enter the details to predict sales")
|
|
| 53 |
input_data = {}
|
| 54 |
col1,col2 = st.columns(2)
|
| 55 |
with col1:
|
| 56 |
-
input_data[
|
| 57 |
-
input_data[
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
input_data[
|
| 61 |
-
input_data[
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
|
| 66 |
with col2:
|
| 67 |
-
input_data[
|
| 68 |
-
input_data[
|
| 69 |
-
input_data[
|
| 70 |
-
input_data[
|
| 71 |
-
input_data[
|
| 72 |
-
input_data[
|
| 73 |
-
input_data["PaperlessBilling"] = st.radio('Do you prefer PaperlessBilling?', ('Yes', 'No'))
|
| 74 |
-
input_data["PaymentMethod"] = st.selectbox('Which PaymentMethod do you prefer?', ('Electronic check', 'Mailed check', 'Bank transfer (automatic)',
|
| 75 |
-
'Credit card (automatic)'))
|
| 76 |
-
input_data["MonthlyCharges"] = st.number_input("Enter monthly charges (the range should between 0-120)")
|
| 77 |
-
input_data["TotalCharges"] = st.number_input("Enter total charges (the range should between 0-10.000)")
|
| 78 |
|
| 79 |
|
| 80 |
# Define CSS style for the download button
|
|
@@ -95,8 +89,24 @@ predict_button_css = """
|
|
| 95 |
</style>
|
| 96 |
"""
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# Display the custom CSS
|
| 99 |
-
st.markdown(predict_button_css, unsafe_allow_html=True)
|
| 100 |
|
| 101 |
|
| 102 |
# Create a button to make a prediction
|
|
@@ -129,10 +139,34 @@ if st.button("Predict", key="predict_button", help="Click to make a prediction."
|
|
| 129 |
|
| 130 |
# Make a prediction
|
| 131 |
prediction = dt_model.predict(final_df)[0]
|
| 132 |
-
prediction_label = "Beware!!! This customer is likely to Churn" if prediction.item() == "Yes" else "This customer is Not likely churn"
|
| 133 |
-
prediction_label
|
| 134 |
|
| 135 |
|
| 136 |
# Display the prediction
|
| 137 |
-
st.write(f"The predicted sales are: {
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import joblib
|
| 8 |
from PIL import Image
|
| 9 |
import base64
|
|
|
|
|
|
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
|
| 12 |
+
REPO_ID = "Abubakari/Sales_Prediction"
|
| 13 |
|
| 14 |
num_imputer = joblib.load(
|
| 15 |
hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib")
|
|
|
|
| 38 |
col1, col2, col3 = st.columns([1, 3, 3])
|
| 39 |
|
| 40 |
|
|
|
|
| 41 |
# Add a subtitle or description
|
| 42 |
st.write("This app uses machine learning to predict sales based on certain input parameters. Simply enter the required information and click 'Predict' to get a sales prediction!")
|
| 43 |
|
|
|
|
| 50 |
input_data = {}
|
| 51 |
col1,col2 = st.columns(2)
|
| 52 |
with col1:
|
| 53 |
+
input_data['store_nbr'] = st.slider("store_nbr",0,54)
|
| 54 |
+
input_data['products'] = st.selectbox("products", ['AUTOMOTIVE', 'CLEANING', 'BEAUTY', 'FOODS', 'STATIONERY',
|
| 55 |
+
'CELEBRATION', 'GROCERY', 'HARDWARE', 'HOME', 'LADIESWEAR',
|
| 56 |
+
'LAWN AND GARDEN', 'CLOTHING', 'LIQUOR,WINE,BEER', 'PET SUPPLIES'])
|
| 57 |
+
input_data['onpromotion'] =st.number_input("onpromotion",step=1)
|
| 58 |
+
input_data['state'] = st.selectbox("state", ['Pichincha', 'Cotopaxi', 'Chimborazo', 'Imbabura',
|
| 59 |
+
'Santo Domingo de los Tsachilas', 'Bolivar', 'Pastaza',
|
| 60 |
+
'Tungurahua', 'Guayas', 'Santa Elena', 'Los Rios', 'Azuay', 'Loja',
|
| 61 |
+
'El Oro', 'Esmeraldas', 'Manabi'])
|
| 62 |
+
input_data['store_type'] = st.selectbox("store_type",['D', 'C', 'B', 'E', 'A'])
|
| 63 |
+
input_data['cluster'] = st.number_input("cluster",step=1)
|
| 64 |
|
| 65 |
with col2:
|
| 66 |
+
input_data['dcoilwtico'] = st.number_input("dcoilwtico",step=1)
|
| 67 |
+
input_data['year'] = st.number_input("year",step=1)
|
| 68 |
+
input_data['month'] = st.slider("month",1,12)
|
| 69 |
+
input_data['day'] = st.slider("day",1,31)
|
| 70 |
+
input_data['dayofweek'] = st.number_input("dayofweek,0=Sun and 6=Sat",step=1)
|
| 71 |
+
input_data['end_month'] = st.selectbox("end_month",['True','False'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
# Define CSS style for the download button
|
|
|
|
| 89 |
</style>
|
| 90 |
"""
|
| 91 |
|
| 92 |
+
download_button_css = """
|
| 93 |
+
<style>
|
| 94 |
+
.download-button {
|
| 95 |
+
background-color: #C4C4C4;
|
| 96 |
+
color: white;
|
| 97 |
+
padding: 0.75rem 2rem;
|
| 98 |
+
border-radius: 0.5rem;
|
| 99 |
+
border: none;
|
| 100 |
+
font-size: 1.1rem;
|
| 101 |
+
font-weight: bold;
|
| 102 |
+
text-align: center;
|
| 103 |
+
margin-top: 1rem;
|
| 104 |
+
}
|
| 105 |
+
</style>
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
# Display the custom CSS
|
| 109 |
+
st.markdown(predict_button_css + download_button_css, unsafe_allow_html=True)
|
| 110 |
|
| 111 |
|
| 112 |
# Create a button to make a prediction
|
|
|
|
| 139 |
|
| 140 |
# Make a prediction
|
| 141 |
prediction = dt_model.predict(final_df)[0]
|
|
|
|
|
|
|
| 142 |
|
| 143 |
|
| 144 |
# Display the prediction
|
| 145 |
+
st.write(f"The predicted sales are: {prediction}.")
|
| 146 |
+
input_df.to_csv("data.csv", index=False)
|
| 147 |
+
st.table(input_df)
|
| 148 |
+
|
| 149 |
+
# Define custom CSS
|
| 150 |
+
css = """
|
| 151 |
+
table {
|
| 152 |
+
background-color: #f2f2f2;
|
| 153 |
+
color: #333333;
|
| 154 |
+
}
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
# Set custom CSS
|
| 158 |
+
st.write(f'<style>{css}</style>', unsafe_allow_html=True)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# Add the download button
|
| 162 |
+
def download_csv():
|
| 163 |
+
with open("data.csv", "r") as f:
|
| 164 |
+
csv = f.read()
|
| 165 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
| 166 |
+
button = f'<button class="download-button"><a href="data:file/csv;base64,{b64}" download="data.csv">Download Data CSV</a></button>'
|
| 167 |
+
return button
|
| 168 |
+
|
| 169 |
+
st.markdown(
|
| 170 |
+
f'<div style="text-align: center">{download_csv()}</div>',
|
| 171 |
+
unsafe_allow_html=True
|
| 172 |
+
)
|
app_2.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import numpy as np
|
| 4 |
+
from matplotlib import pyplot as plt
|
| 5 |
+
import pickle
|
| 6 |
+
import sklearn
|
| 7 |
+
import joblib
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import base64
|
| 10 |
+
from transformers import pipeline
|
| 11 |
+
import datetime
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
|
| 14 |
+
REPO_ID = "AlbieCofie/predict-customer-churn"
|
| 15 |
+
|
| 16 |
+
num_imputer = joblib.load(
|
| 17 |
+
hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib")
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
cat_imputer = joblib.load(
|
| 21 |
+
hf_hub_download(repo_id=REPO_ID, filename="categorical_imputer.joblib")
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
encoder = joblib.load(
|
| 25 |
+
hf_hub_download(repo_id=REPO_ID, filename="encoder.joblib")
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
scaler = joblib.load(
|
| 29 |
+
hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib")
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
dt_model = joblib.load(
|
| 33 |
+
hf_hub_download(repo_id=REPO_ID, filename="Final_model.joblib")
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Add a title and subtitle
|
| 37 |
+
st.write("<center><h1>Sales Prediction App</h1></center>", unsafe_allow_html=True)
|
| 38 |
+
|
| 39 |
+
# Set up the layout
|
| 40 |
+
col1, col2, col3 = st.columns([1, 3, 3])
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
#st.image("https://www.example.com/logo.png", width=200)
|
| 44 |
+
# Add a subtitle or description
|
| 45 |
+
st.write("This app uses machine learning to predict sales based on certain input parameters. Simply enter the required information and click 'Predict' to get a sales prediction!")
|
| 46 |
+
|
| 47 |
+
st.subheader("Enter the details to predict sales")
|
| 48 |
+
|
| 49 |
+
# Add some text
|
| 50 |
+
#st.write("Enter some data for Prediction.")
|
| 51 |
+
|
| 52 |
+
# Create the input fields
|
| 53 |
+
input_data = {}
|
| 54 |
+
col1,col2 = st.columns(2)
|
| 55 |
+
with col1:
|
| 56 |
+
input_data["gender"] = st.radio('Select your gender', ('male', 'female'))
|
| 57 |
+
input_data["SeniorCitizen"] = st.radio("Are you a Seniorcitizen; No=0 and Yes=1", ('0', '1'))
|
| 58 |
+
input_data["Partner"] = st.radio('Do you have Partner', ('Yes', 'No'))
|
| 59 |
+
input_data["Dependents"] = st.selectbox('Do you have any Dependents?', ('No', 'Yes'))
|
| 60 |
+
input_data["tenure"] = st.number_input('Lenght of tenure (no. of months with Telco)', min_value=0, max_value=90, value=1, step=1)
|
| 61 |
+
input_data["PhoneService"] = st.radio('Do you have PhoneService? ', ('No', 'Yes'))
|
| 62 |
+
input_data["MultipleLines"] = st.radio('Do you have MultipleLines', ('No', 'Yes'))
|
| 63 |
+
input_data["InternetService"] = st.radio('Do you have InternetService', ('DSL', 'Fiber optic', 'No'))
|
| 64 |
+
input_data["OnlineSecurity"] = st.radio('Do you have OnlineSecurity?', ('No', 'Yes'))
|
| 65 |
+
|
| 66 |
+
with col2:
|
| 67 |
+
input_data["OnlineBackup"] = st.radio('Do you have OnlineBackup?', ('No', 'Yes'))
|
| 68 |
+
input_data["DeviceProtection"] = st.radio('Do you have DeviceProtection?', ('No', 'Yes'))
|
| 69 |
+
input_data["TechSupport"] = st.radio('Do you have TechSupport?', ('No', 'Yes'))
|
| 70 |
+
input_data["StreamingTV"] = st.radio('Do you have StreamingTV?', ('No', 'Yes'))
|
| 71 |
+
input_data["StreamingMovies"] = st.radio('Do you have StreamingMovies?', ('No', 'Yes'))
|
| 72 |
+
input_data["Contract"] = st.selectbox('which Contract do you use?', ('Month-to-month', 'One year', 'Two year'))
|
| 73 |
+
input_data["PaperlessBilling"] = st.radio('Do you prefer PaperlessBilling?', ('Yes', 'No'))
|
| 74 |
+
input_data["PaymentMethod"] = st.selectbox('Which PaymentMethod do you prefer?', ('Electronic check', 'Mailed check', 'Bank transfer (automatic)',
|
| 75 |
+
'Credit card (automatic)'))
|
| 76 |
+
input_data["MonthlyCharges"] = st.number_input("Enter monthly charges (the range should between 0-120)")
|
| 77 |
+
input_data["TotalCharges"] = st.number_input("Enter total charges (the range should between 0-10.000)")
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# Define CSS style for the download button
|
| 81 |
+
# Define the custom CSS
|
| 82 |
+
predict_button_css = """
|
| 83 |
+
<style>
|
| 84 |
+
.predict-button {
|
| 85 |
+
background-color: #C4C4C4;
|
| 86 |
+
color: gray;
|
| 87 |
+
padding: 0.75rem 2rem;
|
| 88 |
+
border-radius: 0.5rem;
|
| 89 |
+
border: none;
|
| 90 |
+
font-size: 1.1rem;
|
| 91 |
+
font-weight: bold;
|
| 92 |
+
text-align: center;
|
| 93 |
+
margin-top: 2rem;
|
| 94 |
+
}
|
| 95 |
+
</style>
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
# Display the custom CSS
|
| 99 |
+
st.markdown(predict_button_css, unsafe_allow_html=True)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# Create a button to make a prediction
|
| 103 |
+
|
| 104 |
+
if st.button("Predict", key="predict_button", help="Click to make a prediction."):
|
| 105 |
+
# Convert the input data to a pandas DataFrame
|
| 106 |
+
input_df = pd.DataFrame([input_data])
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# Selecting categorical and numerical columns separately
|
| 110 |
+
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
| 111 |
+
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# Apply the imputers
|
| 115 |
+
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
|
| 116 |
+
input_df_imputed_num = num_imputer.transform(input_df[num_columns])
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# Encode the categorical columns
|
| 120 |
+
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
|
| 121 |
+
columns=encoder.get_feature_names(cat_columns))
|
| 122 |
+
|
| 123 |
+
# Scale the numerical columns
|
| 124 |
+
input_df_scaled = scaler.transform(input_df_imputed_num)
|
| 125 |
+
input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
|
| 126 |
+
|
| 127 |
+
#joining the cat encoded and num scaled
|
| 128 |
+
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
|
| 129 |
+
|
| 130 |
+
# Make a prediction
|
| 131 |
+
prediction = dt_model.predict(final_df)[0]
|
| 132 |
+
prediction_label = "Beware!!! This customer is likely to Churn" if prediction.item() == "Yes" else "This customer is Not likely churn"
|
| 133 |
+
prediction_label
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
# Display the prediction
|
| 137 |
+
st.write(f"The predicted sales are: {prediction_label}.")
|
| 138 |
+
st.table(input_df)
|