Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| from transformers import pipeline | |
| import streamlit as st | |
| import datetime | |
| from huggingface_hub import hf_hub_download | |
| import joblib | |
| REPO_ID = "AlbieCofie/predict-customer-churn" | |
| FILENAME = "sklearn_model.joblib" | |
| num_imputer = joblib.load( | |
| hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib") | |
| ) | |
| cat_imputer = joblib.load( | |
| hf_hub_download(repo_id=REPO_ID, filename="categorical_imputer.joblib") | |
| ) | |
| encoder = joblib.load( | |
| hf_hub_download(repo_id=REPO_ID, filename="encoder.joblib") | |
| ) | |
| scaler = joblib.load( | |
| hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib") | |
| ) | |
| model = joblib.load( | |
| hf_hub_download(repo_id=REPO_ID, filename="Final_model.joblib") | |
| ) | |
| # Create a function that applies the ML pipeline and makes predictions | |
| def predict(gender,SeniorCitizen,Partner,Dependents, tenure, PhoneService,MultipleLines, | |
| InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV,StreamingMovies, | |
| Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges): | |
| # Create a dataframe with the input data | |
| input_df = pd.DataFrame({ | |
| 'gender': [gender], | |
| 'SeniorCitizen': [SeniorCitizen], | |
| 'Partner': [Partner], | |
| 'Dependents': [Dependents], | |
| 'tenure': [tenure], | |
| 'PhoneService': [PhoneService], | |
| 'MultipleLines': [MultipleLines], | |
| 'InternetService': [InternetService], | |
| 'OnlineSecurity': [OnlineSecurity], | |
| 'OnlineBackup': [OnlineBackup], | |
| 'DeviceProtection': [DeviceProtection], | |
| 'TechSupport': [TechSupport], | |
| 'StreamingTV': [StreamingTV], | |
| 'StreamingMovies': [StreamingMovies], | |
| 'Contract': [Contract], | |
| 'PaperlessBilling': [PaperlessBilling], | |
| 'PaymentMethod': [PaymentMethod], | |
| 'MonthlyCharges': [MonthlyCharges], | |
| 'TotalCharges': [TotalCharges] | |
| }) | |
| # Selecting categorical and numerical columns separately | |
| cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object'] | |
| num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object'] | |
| # Apply the imputers on the input data | |
| input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns]) | |
| input_df_imputed_num = num_imputer.transform(input_df[num_columns]) | |
| # Encode the categorical columns | |
| input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(), | |
| columns=encoder.get_feature_names_out(cat_columns)) | |
| # Scale the numerical columns | |
| input_df_scaled = scaler.transform(input_df_imputed_num) | |
| input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns) | |
| #joining the cat encoded and num scaled | |
| final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1) | |
| final_df = final_df.reindex(columns=['SeniorCitizen','tenure','MonthlyCharges','TotalCharges', | |
| 'gender_Female','gender_Male','Partner_No','Partner_Yes','Dependents_No','Dependents_Yes','PhoneService_No', | |
| 'PhoneService_Yes','MultipleLines_No','MultipleLines_Yes','InternetService_DSL','InternetService_Fiber optic', | |
| 'InternetService_No','OnlineSecurity_No','OnlineSecurity_Yes','OnlineBackup_No','OnlineBackup_Yes','DeviceProtection_No', | |
| 'DeviceProtection_Yes','TechSupport_No','TechSupport_Yes','StreamingTV_No','StreamingTV_Yes','StreamingMovies_No', | |
| 'StreamingMovies_Yes','Contract_Month-to-month','Contract_One year','Contract_Two year','PaperlessBilling_No', | |
| 'PaperlessBilling_Yes','PaymentMethod_Bank transfer (automatic)','PaymentMethod_Credit card (automatic)','PaymentMethod_Electronic check', | |
| 'PaymentMethod_Mailed check']) | |
| # Make predictions using the model | |
| predictions = model.predict(final_df) | |
| # Make predictions using the model | |
| #predictions = model.predict(final_df) | |
| # Convert the numpy array to an integer | |
| #prediction_label = int(predictions.item()) | |
| prediction_label = "Beware!!! This customer is likely to Churn" if predictions.item() == "Yes" else "This customer is Not likely churn" | |
| return prediction_label | |
| #return predictions | |
| if 'clicked' not in st.session_state: | |
| st.session_state.clicked = False | |
| def click_button(): | |
| st.session_state.clicked = True | |
| st.title("CUSTOMER CHURN PREDICTION APP") | |
| with st.form(key="customer-information"): | |
| st.markdown("This app predicts whether a customer will leave your company or not. Enter the details of the customer below to see the result") | |
| gender = st.radio('Select your gender', ('male', 'female')) | |
| SeniorCitizen = st.radio("Are you a Seniorcitizen; No=0 and Yes=1", ('0', '1')) | |
| Partner = st.radio('Do you have Partner', ('Yes', 'No')) | |
| Dependents = st.selectbox('Do you have any Dependents?', ('No', 'Yes')) | |
| tenure = st.number_input('Lenght of tenure (no. of months with Telco)', min_value=0, max_value=90, value=1, step=1) | |
| PhoneService = st.radio('Do you have PhoneService? ', ('No', 'Yes')) | |
| MultipleLines = st.radio('Do you have MultipleLines', ('No', 'Yes')) | |
| InternetService = st.radio('Do you have InternetService', ('DSL', 'Fiber optic', 'No')) | |
| OnlineSecurity = st.radio('Do you have OnlineSecurity?', ('No', 'Yes')) | |
| OnlineBackup = st.radio('Do you have OnlineBackup?', ('No', 'Yes')) | |
| DeviceProtection = st.radio('Do you have DeviceProtection?', ('No', 'Yes')) | |
| TechSupport = st.radio('Do you have TechSupport?', ('No', 'Yes')) | |
| StreamingTV = st.radio('Do you have StreamingTV?', ('No', 'Yes')) | |
| StreamingMovies = st.radio('Do you have StreamingMovies?', ('No', 'Yes')) | |
| Contract = st.selectbox('which Contract do you use?', ('Month-to-month', 'One year', 'Two year')) | |
| PaperlessBilling = st.radio('Do you prefer PaperlessBilling?', ('Yes', 'No')) | |
| PaymentMethod = st.selectbox('Which PaymentMethod do you prefer?', ('Electronic check', 'Mailed check', 'Bank transfer (automatic)', | |
| 'Credit card (automatic)')) | |
| MonthlyCharges = st.number_input("Enter monthly charges (the range should between 0-120)") | |
| TotalCharges = st.number_input("Enter total charges (the range should between 0-10.000)") | |
| st.form_submit_button('Predict', on_click=click_button) | |
| if st.session_state.clicked: | |
| # The message and nested widget will remain on the page | |
| list = [gender,SeniorCitizen,Partner,Dependents, tenure, PhoneService,MultipleLines, | |
| InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV,StreamingMovies, | |
| Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges] | |
| df = pd.DataFrame(list, columns=("{f}", list), index=False) | |
| st.dataframe(df) | |
| #predict(gender,SeniorCitizen,Partner,Dependents, tenure, PhoneService,MultipleLines, | |
| #InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV,StreamingMovies, | |
| #Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges) |