Spaces:
Runtime error
Runtime error
| from transformers import pipeline | |
| import gradio as gr | |
| from gradio.mix import Parallel | |
| pretrained_sentiment = "w11wo/indonesian-roberta-base-sentiment-classifier" | |
| pretrained_ner = "cahya/bert-base-indonesian-NER" | |
| sentiment_pipeline = pipeline( | |
| "sentiment-analysis", | |
| model=pretrained_sentiment, | |
| tokenizer=pretrained_sentiment, | |
| return_all_scores=True | |
| ) | |
| ner_pipeline = pipeline( | |
| "ner", | |
| model=pretrained_ner, | |
| tokenizer=pretrained_ner | |
| ) | |
| examples = [ | |
| "Masyarakat sangat kecewa dengan tragedi Kanjuruhan", | |
| "Jokowi mengutuk kepolisian atas kerusuhan yang terjadi di Malang" | |
| ] | |
| def sentiment_analysis(text): | |
| output = sentiment_pipeline(text) | |
| return {elm["label"]: elm["score"] for elm in output[0]} | |
| def ner(text): | |
| output = ner_pipeline(text) | |
| return {"text": text, "entities": output} | |
| sentiment_demo = gr.Interface( | |
| fn=sentiment_analysis, | |
| inputs="text", | |
| outputs="label", | |
| interpretation="default", | |
| title="Sentiment Classification") | |
| ner_demo = gr.Interface( | |
| ner, | |
| "text", | |
| gr.HighlightedText(), | |
| examples=examples, | |
| title="Named Entity Recognition") | |
| if __name__ == "__main__": | |
| Parallel(sentiment_demo, ner_demo, | |
| inputs=gr.Textbox(lines=20, label="Input Text", placeholder="Enter sentences here..."), | |
| title="Entity Based Sentiment Analysis Indonesia", | |
| examples=examples).launch() |