wiraindrak's picture
Update app.py
ef26fd6
raw
history blame
650 Bytes
from transformers import pipeline
import gradio as gr
pretrained_name = "w11wo/indonesian-roberta-base-sentiment-classifier"
sentiment = pipeline(
"sentiment-analysis",
model=pretrained_name,
tokenizer=pretrained_name
)
examples = [
"Ada apa dengan Jokowi di istana negara?",
]
def sentiment_analysis(text):
scores = sid.polarity_scores(text)
del scores["compound"]
return scores
demo = gr.Interface(
fn=sentiment_analysis,
inputs=gr.Textbox(placeholder="Enter a sentence here..."),
outputs="label",
interpretation="default",
examples=[examples])
if __name__ == "__main__":
demo.launch()