File size: 1,241 Bytes
2168cf5
 
 
53c2635
2168cf5
7f68476
 
2168cf5
7f68476
ef26fd6
7f68476
 
a60235f
2168cf5
 
7f68476
 
 
 
 
 
2168cf5
d961c51
7f68476
2168cf5
 
ef26fd6
7f68476
d961c51
7f68476
 
 
 
2168cf5
c0d80b6
53c2635
0fc2865
c0d80b6
0fc2865
 
2168cf5
0fc2865
 
 
 
 
c0d80b6
2168cf5
0fc2865
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from transformers import pipeline

import gradio as gr
from gradio.mix import Series

pretrained_sentiment = "w11wo/indonesian-roberta-base-sentiment-classifier"
pretrained_ner = "cahya/bert-base-indonesian-NER"

sentiment_pipeline = pipeline(
    "sentiment-analysis",
    model=pretrained_sentiment,
    tokenizer=pretrained_sentiment,
    return_all_scores=True
)

ner_pipeline = pipeline(
    "ner",
    model=pretrained_ner,
    tokenizer=pretrained_ner
)

examples = [
    "Masyarakat sangat kecewa dengan tragedi Kanjuruhan",
    "Jokowi mengutuk kepolisian atas kerusuhan yang terjadi di Malang"
]

def sentiment_analysis(text):
    output = sentiment_pipeline(text)
    return {elm["label"]: elm["score"] for elm in output[0]}
    
def ner(text):
    output = ner_pipeline(text)
    return {"text": text, "entities": output}

sentiment_demo = gr.Interface(
    fn=sentiment_analysis,
    inputs=gr.Textbox(placeholder="Enter sentence here...")
    outputs="label",
    interpretation="default",
    examples=[examples])

ner_demo = gr.Interface(
    ner,
    gr.Textbox(placeholder="Enter sentence here...")
    gr.HighlightedText(),
    examples=[examples])

if __name__ == "__main__":
    Series(sentiment_demo, ner_demo).launch()