Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,90 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel
|
3 |
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
import torch
|
|
|
6 |
|
7 |
# Load JinaAI CLIP model
|
8 |
-
model = AutoModel.from_pretrained(
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
if input1_type == "Text" and not input1.strip():
|
25 |
-
return "Error: Input 1 is empty!"
|
26 |
-
if input2_type == "Text" and not input2.strip():
|
27 |
-
return "Error: Input 2 is empty!"
|
28 |
-
if input1_type == "Image" and input1 is None:
|
29 |
-
return "Error: Image 1 is missing!"
|
30 |
-
if input2_type == "Image" and input2 is None:
|
31 |
-
return "Error: Image 2 is missing!"
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
similarity_score = (embedding1 @ embedding2.T).item()
|
42 |
-
return f"Similarity Score: {similarity_score:.4f}"
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
return (
|
47 |
-
gr.update(visible=(input1_type == "Text"), value="" if input1_type == "Image" else None),
|
48 |
-
gr.update(visible=(input1_type == "Image"), value=None),
|
49 |
-
gr.update(visible=(input2_type == "Text"), value="" if input2_type == "Image" else None),
|
50 |
-
gr.update(visible=(input2_type == "Image"), value=None)
|
51 |
-
)
|
52 |
|
53 |
# Gradio UI
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
outputs=[input1_text, input1_image, input2_text, input2_image])
|
74 |
-
input2_type.change(update_visibility, inputs=[input1_type, input2_type],
|
75 |
-
outputs=[input1_text, input1_image, input2_text, input2_image])
|
76 |
|
77 |
-
|
78 |
-
|
79 |
|
80 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel
|
3 |
from PIL import Image
|
|
|
4 |
import torch
|
5 |
+
import numpy as np
|
6 |
|
7 |
# Load JinaAI CLIP model
|
8 |
+
model = AutoModel.from_pretrained('jinaai/jina-clip-v1', trust_remote_code=True)
|
9 |
|
10 |
+
def compute_similarity(input1, input2):
|
11 |
+
"""
|
12 |
+
Computes similarity between:
|
13 |
+
- Image and Text
|
14 |
+
- Image and Image
|
15 |
+
- Text and Text
|
16 |
+
"""
|
17 |
+
|
18 |
+
# Detect input types
|
19 |
+
input1_is_text = isinstance(input1, str) and input1.strip() != ""
|
20 |
+
input2_is_text = isinstance(input2, str) and input2.strip() != ""
|
21 |
+
input1_is_image = isinstance(input1, np.ndarray)
|
22 |
+
input2_is_image = isinstance(input2, np.ndarray)
|
23 |
|
24 |
+
# Ensure valid input
|
25 |
+
if not (input1_is_text or input1_is_image) or not (input2_is_text or input2_is_image):
|
26 |
+
return "Error: Both inputs must be valid (image or text)!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
try:
|
29 |
+
with torch.no_grad():
|
30 |
+
if input1_is_text and input2_is_text:
|
31 |
+
# Text-Text Similarity
|
32 |
+
emb1 = model.encode_text([input1])
|
33 |
+
emb2 = model.encode_text([input2])
|
34 |
+
elif input1_is_image and input2_is_image:
|
35 |
+
# Image-Image Similarity
|
36 |
+
image1 = Image.fromarray(input1)
|
37 |
+
image2 = Image.fromarray(input2)
|
38 |
+
emb1 = model.encode_image([image1])
|
39 |
+
emb2 = model.encode_image([image2])
|
40 |
+
else:
|
41 |
+
# Image-Text Similarity
|
42 |
+
if input1_is_image:
|
43 |
+
image = Image.fromarray(input1)
|
44 |
+
text = input2
|
45 |
+
emb1 = model.encode_image([image])
|
46 |
+
emb2 = model.encode_text([text])
|
47 |
+
else:
|
48 |
+
image = Image.fromarray(input2)
|
49 |
+
text = input1
|
50 |
+
emb1 = model.encode_text([text])
|
51 |
+
emb2 = model.encode_image([image])
|
52 |
|
53 |
+
# Compute cosine similarity
|
54 |
+
similarity_score = (emb1 @ emb2.T).item()
|
55 |
|
56 |
+
return similarity_score
|
|
|
|
|
57 |
|
58 |
+
except Exception as e:
|
59 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# Gradio UI
|
62 |
+
demo = gr.Interface(
|
63 |
+
fn=compute_similarity,
|
64 |
+
inputs=[
|
65 |
+
gr.Radio(["Text", "Image"], label="Input 1 Type", value="Text"),
|
66 |
+
gr.Textbox(label="Text Input 1", visible=True),
|
67 |
+
gr.Image(type="numpy", label="Image Input 1", visible=False),
|
68 |
|
69 |
+
gr.Radio(["Text", "Image"], label="Input 2 Type", value="Text"),
|
70 |
+
gr.Textbox(label="Text Input 2", visible=True),
|
71 |
+
gr.Image(type="numpy", label="Image Input 2", visible=False),
|
72 |
+
],
|
73 |
+
outputs=gr.Textbox(label="Similarity Score / Error", interactive=False),
|
74 |
+
title="JinaAI CLIP Multimodal Similarity",
|
75 |
+
description="Compare similarity between two inputs (Text, Image, or both)."
|
76 |
+
)
|
77 |
|
78 |
+
# Update visibility dynamically
|
79 |
+
def update_visibility(input1_type, input2_type):
|
80 |
+
return (
|
81 |
+
input1_type == "Text", # Text input 1 visibility
|
82 |
+
input1_type == "Image", # Image input 1 visibility
|
83 |
+
input2_type == "Text", # Text input 2 visibility
|
84 |
+
input2_type == "Image" # Image input 2 visibility
|
85 |
+
)
|
|
|
|
|
|
|
86 |
|
87 |
+
# Add event handlers for input type change
|
88 |
+
demo.load(update_visibility, inputs=["Input 1 Type", "Input 2 Type"], outputs=["Text Input 1", "Image Input 1", "Text Input 2", "Image Input 2"])
|
89 |
|
90 |
demo.launch()
|