Spaces:
Runtime error
Runtime error
add debug
Browse files
app.py
CHANGED
@@ -24,6 +24,7 @@ class ChaplinGradio:
|
|
24 |
self.frame_buffer = []
|
25 |
self.min_frames = 32 # 2 seconds of video at 16 fps
|
26 |
self.last_prediction = ""
|
|
|
27 |
|
28 |
def download_models(self):
|
29 |
"""Download required model files from HuggingFace"""
|
@@ -71,26 +72,34 @@ class ChaplinGradio:
|
|
71 |
self.last_frame_time = current_time
|
72 |
|
73 |
if frame is None:
|
|
|
74 |
return "No video input detected"
|
75 |
|
76 |
try:
|
|
|
|
|
77 |
# Convert frame to grayscale if it's not already
|
78 |
if len(frame.shape) == 3:
|
79 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
|
|
80 |
|
81 |
# Add frame to buffer
|
82 |
self.frame_buffer.append(frame)
|
|
|
83 |
|
84 |
# Process when we have enough frames
|
85 |
if len(self.frame_buffer) >= self.min_frames:
|
|
|
86 |
# Create temp directory if it doesn't exist
|
87 |
os.makedirs("temp", exist_ok=True)
|
88 |
|
89 |
# Generate temporary video file path
|
90 |
temp_video = f"temp/frames_{time.time_ns()}.mp4"
|
|
|
91 |
|
92 |
# Get frame dimensions from first frame
|
93 |
frame_height, frame_width = self.frame_buffer[0].shape[:2]
|
|
|
94 |
|
95 |
# Create video writer
|
96 |
out = cv2.VideoWriter(
|
@@ -102,16 +111,20 @@ class ChaplinGradio:
|
|
102 |
)
|
103 |
|
104 |
# Write all frames to video
|
105 |
-
for f in self.frame_buffer:
|
106 |
out.write(f)
|
|
|
107 |
out.release()
|
108 |
|
109 |
# Clear buffer but keep last few frames for continuity
|
110 |
self.frame_buffer = self.frame_buffer[-8:] # Keep last 0.5 seconds
|
|
|
111 |
|
112 |
try:
|
113 |
# Process the video file using the pipeline
|
|
|
114 |
predicted_text = self.vsr_model(temp_video)
|
|
|
115 |
if predicted_text:
|
116 |
self.last_prediction = predicted_text
|
117 |
return self.last_prediction
|
@@ -123,6 +136,7 @@ class ChaplinGradio:
|
|
123 |
# Clean up temp file
|
124 |
if os.path.exists(temp_video):
|
125 |
os.remove(temp_video)
|
|
|
126 |
|
127 |
return self.last_prediction or "Waiting for speech..."
|
128 |
|
@@ -137,7 +151,10 @@ chaplin = ChaplinGradio()
|
|
137 |
iface = gr.Interface(
|
138 |
fn=chaplin.process_frame,
|
139 |
inputs=gr.Image(sources=["webcam"], streaming=True),
|
140 |
-
outputs=
|
|
|
|
|
|
|
141 |
title="Chaplin - Live Visual Speech Recognition",
|
142 |
description="Speak clearly into the webcam. The model will process your speech in ~2 second chunks.",
|
143 |
live=True
|
|
|
24 |
self.frame_buffer = []
|
25 |
self.min_frames = 32 # 2 seconds of video at 16 fps
|
26 |
self.last_prediction = ""
|
27 |
+
print(f"Initialized with device: {self.device}, fps: {self.fps}, min_frames: {self.min_frames}")
|
28 |
|
29 |
def download_models(self):
|
30 |
"""Download required model files from HuggingFace"""
|
|
|
72 |
self.last_frame_time = current_time
|
73 |
|
74 |
if frame is None:
|
75 |
+
print("Received None frame")
|
76 |
return "No video input detected"
|
77 |
|
78 |
try:
|
79 |
+
print(f"Received frame with shape: {frame.shape}")
|
80 |
+
|
81 |
# Convert frame to grayscale if it's not already
|
82 |
if len(frame.shape) == 3:
|
83 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
84 |
+
print("Converted frame to grayscale")
|
85 |
|
86 |
# Add frame to buffer
|
87 |
self.frame_buffer.append(frame)
|
88 |
+
print(f"Buffer size now: {len(self.frame_buffer)}/{self.min_frames}")
|
89 |
|
90 |
# Process when we have enough frames
|
91 |
if len(self.frame_buffer) >= self.min_frames:
|
92 |
+
print("Processing buffer - have enough frames")
|
93 |
# Create temp directory if it doesn't exist
|
94 |
os.makedirs("temp", exist_ok=True)
|
95 |
|
96 |
# Generate temporary video file path
|
97 |
temp_video = f"temp/frames_{time.time_ns()}.mp4"
|
98 |
+
print(f"Created temp video path: {temp_video}")
|
99 |
|
100 |
# Get frame dimensions from first frame
|
101 |
frame_height, frame_width = self.frame_buffer[0].shape[:2]
|
102 |
+
print(f"Video dimensions: {frame_width}x{frame_height}")
|
103 |
|
104 |
# Create video writer
|
105 |
out = cv2.VideoWriter(
|
|
|
111 |
)
|
112 |
|
113 |
# Write all frames to video
|
114 |
+
for i, f in enumerate(self.frame_buffer):
|
115 |
out.write(f)
|
116 |
+
print(f"Wrote {i+1} frames to video")
|
117 |
out.release()
|
118 |
|
119 |
# Clear buffer but keep last few frames for continuity
|
120 |
self.frame_buffer = self.frame_buffer[-8:] # Keep last 0.5 seconds
|
121 |
+
print(f"Cleared buffer, kept {len(self.frame_buffer)} frames")
|
122 |
|
123 |
try:
|
124 |
# Process the video file using the pipeline
|
125 |
+
print("Starting model inference...")
|
126 |
predicted_text = self.vsr_model(temp_video)
|
127 |
+
print(f"Model prediction: {predicted_text}")
|
128 |
if predicted_text:
|
129 |
self.last_prediction = predicted_text
|
130 |
return self.last_prediction
|
|
|
136 |
# Clean up temp file
|
137 |
if os.path.exists(temp_video):
|
138 |
os.remove(temp_video)
|
139 |
+
print("Cleaned up temp video file")
|
140 |
|
141 |
return self.last_prediction or "Waiting for speech..."
|
142 |
|
|
|
151 |
iface = gr.Interface(
|
152 |
fn=chaplin.process_frame,
|
153 |
inputs=gr.Image(sources=["webcam"], streaming=True),
|
154 |
+
outputs=[
|
155 |
+
gr.Textbox(label="Predicted Text", interactive=False),
|
156 |
+
gr.Textbox(label="Debug Log", interactive=False)
|
157 |
+
],
|
158 |
title="Chaplin - Live Visual Speech Recognition",
|
159 |
description="Speak clearly into the webcam. The model will process your speech in ~2 second chunks.",
|
160 |
live=True
|