Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from pipelines.pipeline import InferencePipeline
|
5 |
+
import time
|
6 |
+
|
7 |
+
|
8 |
+
class ChaplinGradio:
|
9 |
+
def __init__(self):
|
10 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
self.vsr_model = None
|
12 |
+
self.load_models()
|
13 |
+
|
14 |
+
# Video params
|
15 |
+
self.fps = 16
|
16 |
+
self.frame_interval = 1 / self.fps
|
17 |
+
self.frame_compression = 25
|
18 |
+
self.last_frame_time = time.time()
|
19 |
+
|
20 |
+
def load_models(self):
|
21 |
+
"""Load models using the InferencePipeline with HF Space defaults"""
|
22 |
+
config = {
|
23 |
+
"model": {
|
24 |
+
"name": "chaplin_vsr",
|
25 |
+
"weights": "models/chaplin_vsr.pth",
|
26 |
+
"detector": "mediapipe"
|
27 |
+
}
|
28 |
+
}
|
29 |
+
|
30 |
+
self.vsr_model = InferencePipeline(
|
31 |
+
config,
|
32 |
+
device=self.device,
|
33 |
+
detector="mediapipe",
|
34 |
+
face_track=True
|
35 |
+
)
|
36 |
+
print("Model loaded successfully!")
|
37 |
+
|
38 |
+
def process_frame(self, frame):
|
39 |
+
"""Process a single frame with rate limiting and compression"""
|
40 |
+
current_time = time.time()
|
41 |
+
|
42 |
+
if current_time - self.last_frame_time < self.frame_interval:
|
43 |
+
return None
|
44 |
+
|
45 |
+
self.last_frame_time = current_time
|
46 |
+
|
47 |
+
if frame is None:
|
48 |
+
return "No video input detected"
|
49 |
+
|
50 |
+
# Compress frame
|
51 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), self.frame_compression]
|
52 |
+
_, buffer = cv2.imencode('.jpg', frame, encode_param)
|
53 |
+
compressed_frame = cv2.imdecode(buffer, cv2.IMREAD_GRAYSCALE)
|
54 |
+
|
55 |
+
# Run inference using the VSR model
|
56 |
+
predicted_text = self.vsr_model.process_frame(compressed_frame)
|
57 |
+
|
58 |
+
return predicted_text
|
59 |
+
|
60 |
+
|
61 |
+
# Create Gradio interface
|
62 |
+
chaplin = ChaplinGradio()
|
63 |
+
|
64 |
+
iface = gr.Interface(
|
65 |
+
fn=chaplin.process_frame,
|
66 |
+
inputs=gr.Image(source="webcam", streaming=True),
|
67 |
+
outputs=gr.Textbox(label="Predicted Text"),
|
68 |
+
title="Chaplin - Live Visual Speech Recognition",
|
69 |
+
description="Use your webcam to perform real-time visual speech recognition.",
|
70 |
+
live=True
|
71 |
+
)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
iface.launch()
|