Spaces:
Runtime error
Runtime error
fix frames as video
Browse files
app.py
CHANGED
@@ -19,6 +19,10 @@ class ChaplinGradio:
|
|
19 |
self.frame_interval = 1 / self.fps
|
20 |
self.frame_compression = 25
|
21 |
self.last_frame_time = time.time()
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def download_models(self):
|
24 |
"""Download required model files from HuggingFace"""
|
@@ -57,7 +61,7 @@ class ChaplinGradio:
|
|
57 |
print("Model loaded successfully!")
|
58 |
|
59 |
def process_frame(self, frame):
|
60 |
-
"""Process
|
61 |
current_time = time.time()
|
62 |
|
63 |
if current_time - self.last_frame_time < self.frame_interval:
|
@@ -69,50 +73,59 @@ class ChaplinGradio:
|
|
69 |
return "No video input detected"
|
70 |
|
71 |
try:
|
72 |
-
# Create temp directory if it doesn't exist
|
73 |
-
os.makedirs("temp", exist_ok=True)
|
74 |
-
|
75 |
-
# Generate temporary video file path
|
76 |
-
temp_video = f"temp/frame_{time.time_ns()}.mp4"
|
77 |
-
|
78 |
-
# Compress and save frame as video
|
79 |
-
frame_height, frame_width = frame.shape[:2]
|
80 |
-
out = cv2.VideoWriter(
|
81 |
-
temp_video,
|
82 |
-
cv2.VideoWriter_fourcc(*'mp4v'),
|
83 |
-
self.fps,
|
84 |
-
(frame_width, frame_height),
|
85 |
-
False # isColor
|
86 |
-
)
|
87 |
-
|
88 |
# Convert frame to grayscale if it's not already
|
89 |
if len(frame.shape) == 3:
|
90 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
91 |
-
|
92 |
-
# Write frame to video
|
93 |
-
out.write(frame)
|
94 |
-
out.release()
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
#
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
except Exception as e:
|
110 |
-
print(f"Error
|
111 |
-
return f"Error
|
112 |
-
finally:
|
113 |
-
# Make sure we always try to clean up
|
114 |
-
if 'temp_video' in locals() and os.path.exists(temp_video):
|
115 |
-
os.remove(temp_video)
|
116 |
|
117 |
|
118 |
# Create Gradio interface
|
|
|
19 |
self.frame_interval = 1 / self.fps
|
20 |
self.frame_compression = 25
|
21 |
self.last_frame_time = time.time()
|
22 |
+
|
23 |
+
# Frame buffer
|
24 |
+
self.frame_buffer = []
|
25 |
+
self.buffer_size = 16 # Number of frames to accumulate before processing
|
26 |
|
27 |
def download_models(self):
|
28 |
"""Download required model files from HuggingFace"""
|
|
|
61 |
print("Model loaded successfully!")
|
62 |
|
63 |
def process_frame(self, frame):
|
64 |
+
"""Process frames with buffering"""
|
65 |
current_time = time.time()
|
66 |
|
67 |
if current_time - self.last_frame_time < self.frame_interval:
|
|
|
73 |
return "No video input detected"
|
74 |
|
75 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Convert frame to grayscale if it's not already
|
77 |
if len(frame.shape) == 3:
|
78 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Add frame to buffer
|
81 |
+
self.frame_buffer.append(frame)
|
82 |
+
|
83 |
+
# Only process when we have enough frames
|
84 |
+
if len(self.frame_buffer) >= self.buffer_size:
|
85 |
+
# Create temp directory if it doesn't exist
|
86 |
+
os.makedirs("temp", exist_ok=True)
|
87 |
+
|
88 |
+
# Generate temporary video file path
|
89 |
+
temp_video = f"temp/frames_{time.time_ns()}.mp4"
|
90 |
+
|
91 |
+
# Get frame dimensions from first frame
|
92 |
+
frame_height, frame_width = self.frame_buffer[0].shape[:2]
|
93 |
|
94 |
+
# Create video writer
|
95 |
+
out = cv2.VideoWriter(
|
96 |
+
temp_video,
|
97 |
+
cv2.VideoWriter_fourcc(*'mp4v'),
|
98 |
+
self.fps,
|
99 |
+
(frame_width, frame_height),
|
100 |
+
False # isColor
|
101 |
+
)
|
102 |
|
103 |
+
# Write all frames to video
|
104 |
+
for f in self.frame_buffer:
|
105 |
+
out.write(f)
|
106 |
+
out.release()
|
107 |
|
108 |
+
# Clear buffer
|
109 |
+
self.frame_buffer = []
|
110 |
+
|
111 |
+
try:
|
112 |
+
# Process the video file using the pipeline
|
113 |
+
predicted_text = self.vsr_model(temp_video)
|
114 |
+
return predicted_text
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Error during inference: {str(e)}")
|
118 |
+
return f"Error processing frames: {str(e)}"
|
119 |
+
finally:
|
120 |
+
# Clean up temp file
|
121 |
+
if os.path.exists(temp_video):
|
122 |
+
os.remove(temp_video)
|
123 |
+
|
124 |
+
return "Collecting frames..." # Return status while collecting frames
|
125 |
|
126 |
except Exception as e:
|
127 |
+
print(f"Error processing: {str(e)}")
|
128 |
+
return f"Error processing: {str(e)}"
|
|
|
|
|
|
|
|
|
129 |
|
130 |
|
131 |
# Create Gradio interface
|