Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # Copyright 2019 Shigeki Karita | |
| # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
| """Encoder definition.""" | |
| import torch | |
| from espnet.nets.pytorch_backend.nets_utils import rename_state_dict | |
| #from espnet.nets.pytorch_backend.transducer.vgg import VGG2L | |
| from espnet.nets.pytorch_backend.transformer.attention import ( | |
| MultiHeadedAttention, # noqa: H301 | |
| RelPositionMultiHeadedAttention, # noqa: H301 | |
| LegacyRelPositionMultiHeadedAttention, # noqa: H301 | |
| ) | |
| from espnet.nets.pytorch_backend.transformer.convolution import ConvolutionModule | |
| from espnet.nets.pytorch_backend.transformer.embedding import ( | |
| PositionalEncoding, # noqa: H301 | |
| RelPositionalEncoding, # noqa: H301 | |
| LegacyRelPositionalEncoding, # noqa: H301 | |
| ) | |
| from espnet.nets.pytorch_backend.transformer.encoder_layer import EncoderLayer | |
| from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm | |
| from espnet.nets.pytorch_backend.transformer.multi_layer_conv import Conv1dLinear | |
| from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d | |
| from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import ( | |
| PositionwiseFeedForward, # noqa: H301 | |
| ) | |
| from espnet.nets.pytorch_backend.transformer.repeat import repeat | |
| from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling | |
| from espnet.nets.pytorch_backend.transformer.raw_embeddings import VideoEmbedding | |
| from espnet.nets.pytorch_backend.transformer.raw_embeddings import AudioEmbedding | |
| from espnet.nets.pytorch_backend.backbones.conv3d_extractor import Conv3dResNet | |
| from espnet.nets.pytorch_backend.backbones.conv1d_extractor import Conv1dResNet | |
| def _pre_hook( | |
| state_dict, | |
| prefix, | |
| local_metadata, | |
| strict, | |
| missing_keys, | |
| unexpected_keys, | |
| error_msgs, | |
| ): | |
| # https://github.com/espnet/espnet/commit/21d70286c354c66c0350e65dc098d2ee236faccc#diff-bffb1396f038b317b2b64dd96e6d3563 | |
| rename_state_dict(prefix + "input_layer.", prefix + "embed.", state_dict) | |
| # https://github.com/espnet/espnet/commit/3d422f6de8d4f03673b89e1caef698745ec749ea#diff-bffb1396f038b317b2b64dd96e6d3563 | |
| rename_state_dict(prefix + "norm.", prefix + "after_norm.", state_dict) | |
| class Encoder(torch.nn.Module): | |
| """Transformer encoder module. | |
| :param int idim: input dim | |
| :param int attention_dim: dimention of attention | |
| :param int attention_heads: the number of heads of multi head attention | |
| :param int linear_units: the number of units of position-wise feed forward | |
| :param int num_blocks: the number of decoder blocks | |
| :param float dropout_rate: dropout rate | |
| :param float attention_dropout_rate: dropout rate in attention | |
| :param float positional_dropout_rate: dropout rate after adding positional encoding | |
| :param str or torch.nn.Module input_layer: input layer type | |
| :param class pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | |
| :param bool normalize_before: whether to use layer_norm before the first block | |
| :param bool concat_after: whether to concat attention layer's input and output | |
| if True, additional linear will be applied. | |
| i.e. x -> x + linear(concat(x, att(x))) | |
| if False, no additional linear will be applied. i.e. x -> x + att(x) | |
| :param str positionwise_layer_type: linear of conv1d | |
| :param int positionwise_conv_kernel_size: kernel size of positionwise conv1d layer | |
| :param str encoder_attn_layer_type: encoder attention layer type | |
| :param bool macaron_style: whether to use macaron style for positionwise layer | |
| :param bool use_cnn_module: whether to use convolution module | |
| :param bool zero_triu: whether to zero the upper triangular part of attention matrix | |
| :param int cnn_module_kernel: kernerl size of convolution module | |
| :param int padding_idx: padding_idx for input_layer=embed | |
| """ | |
| def __init__( | |
| self, | |
| idim, | |
| attention_dim=256, | |
| attention_heads=4, | |
| linear_units=2048, | |
| num_blocks=6, | |
| dropout_rate=0.1, | |
| positional_dropout_rate=0.1, | |
| attention_dropout_rate=0.0, | |
| input_layer="conv2d", | |
| pos_enc_class=PositionalEncoding, | |
| normalize_before=True, | |
| concat_after=False, | |
| positionwise_layer_type="linear", | |
| positionwise_conv_kernel_size=1, | |
| macaron_style=False, | |
| encoder_attn_layer_type="mha", | |
| use_cnn_module=False, | |
| zero_triu=False, | |
| cnn_module_kernel=31, | |
| padding_idx=-1, | |
| relu_type="prelu", | |
| a_upsample_ratio=1, | |
| ): | |
| """Construct an Encoder object.""" | |
| super(Encoder, self).__init__() | |
| self._register_load_state_dict_pre_hook(_pre_hook) | |
| if encoder_attn_layer_type == "rel_mha": | |
| pos_enc_class = RelPositionalEncoding | |
| elif encoder_attn_layer_type == "legacy_rel_mha": | |
| pos_enc_class = LegacyRelPositionalEncoding | |
| # -- frontend module. | |
| if input_layer == "conv1d": | |
| self.frontend = Conv1dResNet( | |
| relu_type=relu_type, | |
| a_upsample_ratio=a_upsample_ratio, | |
| ) | |
| elif input_layer == "conv3d": | |
| self.frontend = Conv3dResNet(relu_type=relu_type) | |
| else: | |
| self.frontend = None | |
| # -- backend module. | |
| if input_layer == "linear": | |
| self.embed = torch.nn.Sequential( | |
| torch.nn.Linear(idim, attention_dim), | |
| torch.nn.LayerNorm(attention_dim), | |
| torch.nn.Dropout(dropout_rate), | |
| torch.nn.ReLU(), | |
| pos_enc_class(attention_dim, positional_dropout_rate), | |
| ) | |
| elif input_layer == "conv2d": | |
| self.embed = Conv2dSubsampling( | |
| idim, | |
| attention_dim, | |
| dropout_rate, | |
| pos_enc_class(attention_dim, dropout_rate), | |
| ) | |
| elif input_layer == "vgg2l": | |
| self.embed = VGG2L(idim, attention_dim) | |
| elif input_layer == "embed": | |
| self.embed = torch.nn.Sequential( | |
| torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx), | |
| pos_enc_class(attention_dim, positional_dropout_rate), | |
| ) | |
| elif isinstance(input_layer, torch.nn.Module): | |
| self.embed = torch.nn.Sequential( | |
| input_layer, pos_enc_class(attention_dim, positional_dropout_rate), | |
| ) | |
| elif input_layer in ["conv1d", "conv3d"]: | |
| self.embed = torch.nn.Sequential( | |
| torch.nn.Linear(512, attention_dim), | |
| pos_enc_class(attention_dim, positional_dropout_rate) | |
| ) | |
| elif input_layer is None: | |
| self.embed = torch.nn.Sequential( | |
| pos_enc_class(attention_dim, positional_dropout_rate) | |
| ) | |
| else: | |
| raise ValueError("unknown input_layer: " + input_layer) | |
| self.normalize_before = normalize_before | |
| if positionwise_layer_type == "linear": | |
| positionwise_layer = PositionwiseFeedForward | |
| positionwise_layer_args = (attention_dim, linear_units, dropout_rate) | |
| elif positionwise_layer_type == "conv1d": | |
| positionwise_layer = MultiLayeredConv1d | |
| positionwise_layer_args = ( | |
| attention_dim, | |
| linear_units, | |
| positionwise_conv_kernel_size, | |
| dropout_rate, | |
| ) | |
| elif positionwise_layer_type == "conv1d-linear": | |
| positionwise_layer = Conv1dLinear | |
| positionwise_layer_args = ( | |
| attention_dim, | |
| linear_units, | |
| positionwise_conv_kernel_size, | |
| dropout_rate, | |
| ) | |
| else: | |
| raise NotImplementedError("Support only linear or conv1d.") | |
| if encoder_attn_layer_type == "mha": | |
| encoder_attn_layer = MultiHeadedAttention | |
| encoder_attn_layer_args = ( | |
| attention_heads, | |
| attention_dim, | |
| attention_dropout_rate, | |
| ) | |
| elif encoder_attn_layer_type == "legacy_rel_mha": | |
| encoder_attn_layer = LegacyRelPositionMultiHeadedAttention | |
| encoder_attn_layer_args = ( | |
| attention_heads, | |
| attention_dim, | |
| attention_dropout_rate, | |
| ) | |
| elif encoder_attn_layer_type == "rel_mha": | |
| encoder_attn_layer = RelPositionMultiHeadedAttention | |
| encoder_attn_layer_args = ( | |
| attention_heads, | |
| attention_dim, | |
| attention_dropout_rate, | |
| zero_triu, | |
| ) | |
| else: | |
| raise ValueError("unknown encoder_attn_layer: " + encoder_attn_layer) | |
| convolution_layer = ConvolutionModule | |
| convolution_layer_args = (attention_dim, cnn_module_kernel) | |
| self.encoders = repeat( | |
| num_blocks, | |
| lambda: EncoderLayer( | |
| attention_dim, | |
| encoder_attn_layer(*encoder_attn_layer_args), | |
| positionwise_layer(*positionwise_layer_args), | |
| convolution_layer(*convolution_layer_args) if use_cnn_module else None, | |
| dropout_rate, | |
| normalize_before, | |
| concat_after, | |
| macaron_style, | |
| ), | |
| ) | |
| if self.normalize_before: | |
| self.after_norm = LayerNorm(attention_dim) | |
| def forward(self, xs, masks, extract_resnet_feats=False): | |
| """Encode input sequence. | |
| :param torch.Tensor xs: input tensor | |
| :param torch.Tensor masks: input mask | |
| :param str extract_features: the position for feature extraction | |
| :return: position embedded tensor and mask | |
| :rtype Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| if isinstance(self.frontend, (Conv1dResNet, Conv3dResNet)): | |
| xs = self.frontend(xs) | |
| if extract_resnet_feats: | |
| return xs | |
| if isinstance(self.embed, Conv2dSubsampling): | |
| xs, masks = self.embed(xs, masks) | |
| else: | |
| xs = self.embed(xs) | |
| xs, masks = self.encoders(xs, masks) | |
| if isinstance(xs, tuple): | |
| xs = xs[0] | |
| if self.normalize_before: | |
| xs = self.after_norm(xs) | |
| return xs, masks | |
| def forward_one_step(self, xs, masks, cache=None): | |
| """Encode input frame. | |
| :param torch.Tensor xs: input tensor | |
| :param torch.Tensor masks: input mask | |
| :param List[torch.Tensor] cache: cache tensors | |
| :return: position embedded tensor, mask and new cache | |
| :rtype Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]: | |
| """ | |
| if isinstance(self.frontend, (Conv1dResNet, Conv3dResNet)): | |
| xs = self.frontend(xs) | |
| if isinstance(self.embed, Conv2dSubsampling): | |
| xs, masks = self.embed(xs, masks) | |
| else: | |
| xs = self.embed(xs) | |
| if cache is None: | |
| cache = [None for _ in range(len(self.encoders))] | |
| new_cache = [] | |
| for c, e in zip(cache, self.encoders): | |
| xs, masks = e(xs, masks, cache=c) | |
| new_cache.append(xs) | |
| if self.normalize_before: | |
| xs = self.after_norm(xs) | |
| return xs, masks, new_cache | |