File size: 16,952 Bytes
f5b302e fa1bef5 f5b302e deb6f27 fa1bef5 deb6f27 f5b302e fa1bef5 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 fa1bef5 f5b302e deb6f27 fa1bef5 deb6f27 f5b302e deb6f27 f5b302e fa1bef5 f5b302e deb6f27 f5b302e deb6f27 fa1bef5 deb6f27 fa1bef5 deb6f27 fa1bef5 f5b302e deb6f27 fa1bef5 deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e fa1bef5 f5b302e deb6f27 f5b302e fa1bef5 f5b302e deb6f27 f5b302e deb6f27 f5b302e deb6f27 fa1bef5 deb6f27 f5b302e deb6f27 f5b302e deb6f27 f5b302e fa1bef5 deb6f27 f5b302e fa1bef5 f5b302e 7b20b20 f5b302e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import gradio as gr
import whisper
import tempfile
import os
from utils import SocialGraphManager, SuggestionGenerator
# Define available models
AVAILABLE_MODELS = {
"distilgpt2": "DistilGPT2 (Fast, smaller model)",
"gpt2": "GPT-2 (Medium size, better quality)",
"google/gemma-3-1b-it": "Gemma 3 1B-IT (Small, instruction-tuned)",
"Qwen/Qwen1.5-0.5B": "Qwen 1.5 0.5B (Very small, efficient)",
"Qwen/Qwen1.5-1.8B": "Qwen 1.5 1.8B (Small, good quality)",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0": "TinyLlama 1.1B (Small, chat-tuned)",
"microsoft/phi-3-mini-4k-instruct": "Phi-3 Mini (Small, instruction-tuned)",
"microsoft/phi-2": "Phi-2 (Small, high quality for size)",
}
# Initialize the social graph manager
social_graph = SocialGraphManager("social_graph.json")
# Initialize the suggestion generator with distilgpt2 (default)
suggestion_generator = SuggestionGenerator("distilgpt2")
# Test the model to make sure it's working
test_result = suggestion_generator.test_model()
print(f"Model test result: {test_result}")
# If the model didn't load, use the fallback responses
if not suggestion_generator.model_loaded:
print("Model failed to load, using fallback responses...")
# The SuggestionGenerator class has built-in fallback responses
# Initialize Whisper model (using the smallest model for speed)
try:
whisper_model = whisper.load_model("tiny")
whisper_loaded = True
except Exception as e:
print(f"Error loading Whisper model: {e}")
whisper_loaded = False
def format_person_display(person):
"""Format person information for display in the dropdown."""
return f"{person['name']} ({person['role']})"
def get_people_choices():
"""Get formatted choices for the people dropdown."""
people = social_graph.get_people_list()
choices = {}
for person in people:
display_name = format_person_display(person)
person_id = person["id"]
choices[display_name] = person_id
return choices
def get_topics_for_person(person_id):
"""Get topics for a specific person."""
if not person_id:
return []
person_context = social_graph.get_person_context(person_id)
topics = person_context.get("topics", [])
return topics
def get_suggestion_categories():
"""Get suggestion categories from the social graph."""
if "common_utterances" in social_graph.graph:
return list(social_graph.graph["common_utterances"].keys())
return []
def on_person_change(person_id):
"""Handle person selection change."""
if not person_id:
return "", "", []
person_context = social_graph.get_person_context(person_id)
# Create a more user-friendly context display
name = person_context.get("name", "")
role = person_context.get("role", "")
frequency = person_context.get("frequency", "")
context_text = person_context.get("context", "")
context_info = f"""### I'm talking to: {name}
**Relationship:** {role}
**How often we talk:** {frequency}
**Our relationship:** {context_text}
"""
# Get common phrases for this person
phrases = person_context.get("common_phrases", [])
phrases_text = "\n\n".join(phrases)
# Get topics for this person
topics = person_context.get("topics", [])
return context_info, phrases_text, topics
def change_model(model_name):
"""Change the language model used for generation.
Args:
model_name: The name of the model to use
Returns:
A status message about the model change
"""
global suggestion_generator
print(f"Changing model to: {model_name}")
# Check if we need to change the model
if model_name == suggestion_generator.model_name:
return f"Already using model: {model_name}"
# Try to load the new model
success = suggestion_generator.load_model(model_name)
if success:
return f"Successfully switched to model: {model_name}"
else:
return f"Failed to load model: {model_name}. Using fallback responses instead."
def generate_suggestions(
person_id,
user_input,
suggestion_type,
selected_topic=None,
model_name="distilgpt2",
temperature=0.7,
):
"""Generate suggestions based on the selected person and user input."""
print(
f"Generating suggestions with: person_id={person_id}, user_input={user_input}, "
f"suggestion_type={suggestion_type}, selected_topic={selected_topic}, "
f"model={model_name}, temperature={temperature}"
)
if not person_id:
print("No person_id provided")
return "Please select who you're talking to first."
# Make sure we're using the right model
if model_name != suggestion_generator.model_name:
change_model(model_name)
person_context = social_graph.get_person_context(person_id)
print(f"Person context: {person_context}")
# Try to infer conversation type if user input is provided
inferred_category = None
if user_input and suggestion_type == "auto_detect":
# Simple keyword matching for now - could be enhanced with ML
user_input_lower = user_input.lower()
if any(
word in user_input_lower
for word in ["hi", "hello", "morning", "afternoon", "evening"]
):
inferred_category = "greetings"
elif any(
word in user_input_lower
for word in ["feel", "tired", "happy", "sad", "frustrated"]
):
inferred_category = "emotions"
elif any(
word in user_input_lower
for word in ["need", "want", "help", "water", "toilet", "loo"]
):
inferred_category = "needs"
elif any(
word in user_input_lower
for word in ["what", "how", "when", "where", "why", "did"]
):
inferred_category = "questions"
elif any(
word in user_input_lower
for word in ["remember", "used to", "back then", "when we"]
):
inferred_category = "reminiscing"
elif any(
word in user_input_lower
for word in ["code", "program", "software", "app", "tech"]
):
inferred_category = "tech_talk"
elif any(
word in user_input_lower
for word in ["plan", "schedule", "appointment", "tomorrow", "later"]
):
inferred_category = "organization"
# Add topic to context if selected
if selected_topic:
person_context["selected_topic"] = selected_topic
# Format the output with multiple suggestions
result = ""
# If suggestion type is "model", use the language model for multiple suggestions
if suggestion_type == "model":
print("Using model for suggestions")
# Generate 3 different suggestions
suggestions = []
for i in range(3):
print(f"Generating suggestion {i+1}/3")
try:
suggestion = suggestion_generator.generate_suggestion(
person_context, user_input, temperature=temperature
)
print(f"Generated suggestion: {suggestion}")
suggestions.append(suggestion)
except Exception as e:
print(f"Error generating suggestion: {e}")
suggestions.append("Error generating suggestion")
result = (
f"### AI-Generated Responses (using {suggestion_generator.model_name}):\n\n"
)
for i, suggestion in enumerate(suggestions, 1):
result += f"{i}. {suggestion}\n\n"
print(f"Final result: {result[:100]}...")
# If suggestion type is "common_phrases", use the person's common phrases
elif suggestion_type == "common_phrases":
phrases = social_graph.get_relevant_phrases(person_id, user_input)
result = "### My Common Phrases with this Person:\n\n"
for i, phrase in enumerate(phrases, 1):
result += f"{i}. {phrase}\n\n"
# If suggestion type is "auto_detect", use the inferred category or default to model
elif suggestion_type == "auto_detect":
print(f"Auto-detect mode, inferred category: {inferred_category}")
if inferred_category:
utterances = social_graph.get_common_utterances(inferred_category)
print(f"Got utterances for category {inferred_category}: {utterances}")
result = f"### Auto-detected category: {inferred_category.replace('_', ' ').title()}\n\n"
for i, utterance in enumerate(utterances, 1):
result += f"{i}. {utterance}\n\n"
else:
print("No category inferred, falling back to model")
# Fall back to model if we couldn't infer a category
try:
suggestions = []
for i in range(3):
suggestion = suggestion_generator.generate_suggestion(
person_context, user_input, temperature=temperature
)
suggestions.append(suggestion)
result = f"### AI-Generated Responses (no category detected, using {suggestion_generator.model_name}):\n\n"
for i, suggestion in enumerate(suggestions, 1):
result += f"{i}. {suggestion}\n\n"
except Exception as e:
print(f"Error generating fallback suggestion: {e}")
result = "### Could not generate a response:\n\n"
result += "1. Sorry, I couldn't generate a suggestion at this time.\n\n"
# If suggestion type is a category from common_utterances
elif suggestion_type in get_suggestion_categories():
print(f"Using category: {suggestion_type}")
utterances = social_graph.get_common_utterances(suggestion_type)
print(f"Got utterances: {utterances}")
result = f"### {suggestion_type.replace('_', ' ').title()} Phrases:\n\n"
for i, utterance in enumerate(utterances, 1):
result += f"{i}. {utterance}\n\n"
# Default fallback
else:
print(f"No handler for suggestion type: {suggestion_type}")
result = "No suggestions available. Please try a different option."
print(f"Returning result: {result[:100]}...")
return result
def transcribe_audio(audio_path):
"""Transcribe audio using Whisper."""
if not whisper_loaded:
return "Whisper model not loaded. Please check your installation."
try:
# Transcribe the audio
result = whisper_model.transcribe(audio_path)
return result["text"]
except Exception:
return "Could not transcribe audio. Please try again."
# Create the Gradio interface
with gr.Blocks(title="Will's AAC Communication Aid") as demo:
gr.Markdown("# Will's AAC Communication Aid")
gr.Markdown(
"""
This demo simulates an AAC system from Will's perspective (a 38-year-old with MND).
**How to use this demo:**
1. Select who you (Will) are talking to from the dropdown
2. Optionally select a conversation topic
3. Enter or record what the other person said to you
4. Get suggested responses based on your relationship with that person
"""
)
# Display information about Will
with gr.Accordion("About Me (Will)", open=False):
gr.Markdown(
"""
I'm Will, a 38-year-old computer programmer from Manchester with MND (diagnosed 5 months ago).
I live with my wife Emma and two children (Mabel, 4 and Billy, 7).
Originally from South East London, I enjoy technology, Manchester United, and have fond memories of cycling and hiking.
I'm increasingly using this AAC system as my speech becomes more difficult.
"""
)
with gr.Row():
with gr.Column(scale=1):
# Person selection
person_dropdown = gr.Dropdown(
choices=get_people_choices(),
label="I'm talking to:",
info="Select who you (Will) are talking to",
)
# Get topics for the selected person
def get_filtered_topics(person_id):
if not person_id:
return []
person_context = social_graph.get_person_context(person_id)
return person_context.get("topics", [])
# Topic selection dropdown
topic_dropdown = gr.Dropdown(
choices=[], # Will be populated when a person is selected
label="Topic (optional):",
info="Select a topic relevant to this person",
allow_custom_value=True,
)
# Context display
context_display = gr.Markdown(label="Relationship Context")
# User input section
with gr.Row():
user_input = gr.Textbox(
label="What they said to me:",
placeholder='Examples:\n"How was your physio session today?"\n"The kids are asking if you want to watch a movie tonight"\n"I\'ve been looking at that new AAC software you mentioned"',
lines=3,
)
# Audio input
with gr.Row():
audio_input = gr.Audio(
label="Or record what they said:",
type="filepath",
sources=["microphone"],
)
transcribe_btn = gr.Button("Transcribe", variant="secondary")
# Suggestion type selection
suggestion_type = gr.Radio(
choices=[
"auto_detect",
"model",
"common_phrases",
]
+ get_suggestion_categories(),
value="model", # Default to model for better results
label="How should I respond?",
info="Choose what kind of responses you want (model = AI-generated)",
)
# Model selection
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value="distilgpt2",
label="Language Model",
info="Select which AI model to use for generating responses",
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.7,
step=0.1,
label="Temperature",
info="Controls randomness (higher = more creative, lower = more focused)",
)
# Generate button
generate_btn = gr.Button("Generate My Responses", variant="primary")
# Model status
model_status = gr.Markdown(
value=f"Current model: {suggestion_generator.model_name}",
label="Model Status",
)
with gr.Column(scale=1):
# Common phrases
common_phrases = gr.Textbox(
label="My Common Phrases",
placeholder="Common phrases I often use with this person will appear here...",
lines=5,
)
# Suggestions output
suggestions_output = gr.Markdown(
label="My Suggested Responses",
value="Suggested responses will appear here...",
)
# Set up event handlers
def handle_person_change(person_id):
"""Handle person selection change and update UI elements."""
context_info, phrases_text, _ = on_person_change(person_id)
# Get topics for this person
topics = get_filtered_topics(person_id)
# Update the context, phrases, and topic dropdown
return context_info, phrases_text, gr.update(choices=topics)
def handle_model_change(model_name):
"""Handle model selection change."""
status = change_model(model_name)
return status
# Set up the person change event
person_dropdown.change(
handle_person_change,
inputs=[person_dropdown],
outputs=[context_display, common_phrases, topic_dropdown],
)
# Set up the model change event
model_dropdown.change(
handle_model_change,
inputs=[model_dropdown],
outputs=[model_status],
)
# Set up the generate button click event
generate_btn.click(
generate_suggestions,
inputs=[
person_dropdown,
user_input,
suggestion_type,
topic_dropdown,
model_dropdown,
temperature_slider,
],
outputs=[suggestions_output],
)
# Transcribe audio to text
transcribe_btn.click(
transcribe_audio,
inputs=[audio_input],
outputs=[user_input],
)
# Launch the app
if __name__ == "__main__":
demo.launch()
|