Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,58 @@
|
|
1 |
-
import numpy as np
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
demo = gr.Interface(sepia, gr.Image(), "image")
|
15 |
if __name__ == "__main__":
|
16 |
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from process import load_seg_model, get_palette, generate_mask
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
|
7 |
+
# Model initialization
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
def load_models():
|
11 |
+
try:
|
12 |
+
net = load_seg_model("model/cloth_segm.pth", device=device)
|
13 |
+
palette = get_palette(4)
|
14 |
+
return net, palette
|
15 |
+
except Exception as e:
|
16 |
+
raise gr.Error(f"Model failed to load: {str(e)}")
|
17 |
+
|
18 |
+
net, palette = load_models()
|
19 |
+
|
20 |
+
def predict(image):
|
21 |
+
if image is None:
|
22 |
+
raise gr.Error("Please upload or capture an image first")
|
23 |
+
try:
|
24 |
+
if not isinstance(image, Image.Image):
|
25 |
+
image = Image.fromarray(image)
|
26 |
+
return generate_mask(image, net=net, palette=palette, device=device)
|
27 |
+
except Exception as e:
|
28 |
+
raise gr.Error(f"Processing error: {str(e)}")
|
29 |
+
|
30 |
+
# Interface
|
31 |
+
with gr.Blocks(title="Cloth Segmentation") as demo:
|
32 |
+
gr.Markdown("## 👕 Cloth Segmentation Tool")
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
with gr.Column():
|
36 |
+
img_input = gr.Image(sources=["upload", "webcam"],
|
37 |
+
type="pil",
|
38 |
+
label="Input Image")
|
39 |
+
btn = gr.Button("Generate Mask", variant="primary")
|
40 |
+
|
41 |
+
with gr.Column():
|
42 |
+
img_output = gr.Image(label="Segmentation Result")
|
43 |
+
|
44 |
+
# Optional examples
|
45 |
+
if os.path.exists("examples"):
|
46 |
+
gr.Examples(
|
47 |
+
examples=[os.path.join("examples", f) for f in os.listdir("examples")
|
48 |
+
if f.endswith(('.png','.jpg','.jpeg'))],
|
49 |
+
inputs=img_input,
|
50 |
+
outputs=img_output,
|
51 |
+
fn=predict,
|
52 |
+
cache_examples=True
|
53 |
+
)
|
54 |
+
|
55 |
+
btn.click(predict, inputs=img_input, outputs=img_output)
|
56 |
|
|
|
57 |
if __name__ == "__main__":
|
58 |
demo.launch()
|