Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from langchain.chains import RetrievalQA
|
4 |
from langchain.vectorstores import FAISS
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain.document_loaders import TextLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
-
qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
14 |
|
15 |
-
#
|
16 |
-
# Knowledge base for Crustdata APIs
|
17 |
docs = """
|
18 |
# Crustdata Dataset API
|
19 |
|
@@ -153,35 +148,71 @@ The Crustdata Discovery and Enrichment API allows users to enrich their datasets
|
|
153 |
- Base URL: `https://api.crustdata.com`
|
154 |
"""
|
155 |
|
156 |
-
# Split the documentation into chunks
|
157 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
158 |
doc_chunks = text_splitter.create_documents([docs])
|
159 |
|
160 |
-
#
|
161 |
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
162 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
163 |
docsearch = FAISS.from_documents(doc_chunks, embeddings)
|
164 |
|
165 |
-
# Create a QA chain
|
166 |
-
qa_chain = RetrievalQA.from_chain_type(
|
167 |
-
llm=qa_pipeline,
|
168 |
-
retriever=docsearch.as_retriever(),
|
169 |
-
return_source_documents=True
|
170 |
-
)
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
description="Ask any technical questions about Crustdata’s Dataset and Discovery APIs.",
|
184 |
)
|
185 |
|
186 |
-
|
187 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
|
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.document_loaders import TextLoader
|
7 |
|
8 |
+
# Initialize the Hugging Face Inference client with an open-source LLM
|
9 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # You can use any supported model
|
|
|
|
|
|
|
10 |
|
11 |
+
# Sample knowledge base for Crustdata APIs
|
|
|
12 |
docs = """
|
13 |
# Crustdata Dataset API
|
14 |
|
|
|
148 |
- Base URL: `https://api.crustdata.com`
|
149 |
"""
|
150 |
|
151 |
+
# Split the documentation into smaller chunks
|
152 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
153 |
doc_chunks = text_splitter.create_documents([docs])
|
154 |
|
155 |
+
# Create embeddings and initialize FAISS vector store
|
156 |
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
157 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
158 |
docsearch = FAISS.from_documents(doc_chunks, embeddings)
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
def retrieve_context(query):
|
162 |
+
"""Retrieve the most relevant context from the knowledge base."""
|
163 |
+
results = docsearch.similarity_search(query, k=2) # Retrieve top 2 most similar chunks
|
164 |
+
context = "\n".join([res.page_content for res in results])
|
165 |
+
return context
|
166 |
+
|
167 |
+
|
168 |
+
def respond(
|
169 |
+
message,
|
170 |
+
history: list[tuple[str, str]],
|
171 |
+
system_message,
|
172 |
+
max_tokens,
|
173 |
+
temperature,
|
174 |
+
top_p,
|
175 |
+
):
|
176 |
+
"""Generate a response using the Hugging Face Inference API."""
|
177 |
+
# Retrieve relevant context from the knowledge base
|
178 |
+
context = retrieve_context(message)
|
179 |
+
prompt = f"{system_message}\n\nContext:\n{context}\n\nUser: {message}\nAssistant:"
|
180 |
+
|
181 |
+
messages = [{"role": "system", "content": system_message}]
|
182 |
+
for val in history:
|
183 |
+
if val[0]:
|
184 |
+
messages.append({"role": "user", "content": val[0]})
|
185 |
+
if val[1]:
|
186 |
+
messages.append({"role": "assistant", "content": val[1]})
|
187 |
+
|
188 |
+
messages.append({"role": "user", "content": prompt})
|
189 |
+
|
190 |
+
response = ""
|
191 |
+
|
192 |
+
for message in client.chat_completion(
|
193 |
+
messages,
|
194 |
+
max_tokens=max_tokens,
|
195 |
+
stream=True,
|
196 |
+
temperature=temperature,
|
197 |
+
top_p=top_p,
|
198 |
+
):
|
199 |
+
token = message.choices[0].delta.content
|
200 |
+
response += token
|
201 |
+
yield response
|
202 |
+
|
203 |
+
|
204 |
+
# Gradio interface
|
205 |
+
demo = gr.ChatInterface(
|
206 |
+
respond,
|
207 |
+
additional_inputs=[
|
208 |
+
gr.Textbox(value="You are a technical assistant for Crustdata APIs.", label="System message"),
|
209 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
210 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
211 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
212 |
+
],
|
213 |
+
title="Crustdata API Chatbot",
|
214 |
description="Ask any technical questions about Crustdata’s Dataset and Discovery APIs.",
|
215 |
)
|
216 |
|
217 |
+
if __name__ == "__main__":
|
218 |
+
demo.launch(share=True)
|