import gradio as gr import os from PIL import Image # Paths to the images folder RAW_PATH = os.path.join("images", "raw") EMBEDDINGS_PATH = os.path.join("images", "embeddings") # Function to load and display images based on user selection def display_images(percentage, complexity): # Generate the paths to the images raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") # Load images using PIL raw_image = Image.open(raw_image_path) embeddings_image = Image.open(embeddings_image_path) # Return the loaded images return raw_image, embeddings_image # Define the Gradio interface # Use sliders to make the user interaction smoother data_percentage_range = (10, 100) # Allow percentages between 10 and 100 task_complexity_range = (16, 32) # Allow complexity between 16 and 32 # Define the layout and appearance of the UI with gr.Blocks() as demo: gr.Markdown("# Raw vs. Embeddings Inference Results") gr.Markdown("Select a data percentage and task complexity to view the corresponding inference result for raw channels and embeddings.") # Inputs (using sliders for smoother tuning) with gr.Column(): percentage_slider = gr.Slider(minimum=10, maximum=100, step=10, label="Percentage of Data for Training", value=10) complexity_slider = gr.Slider(minimum=16, maximum=32, step=4, label="Task Complexity", value=16) # Outputs (display the images side by side and set a smaller size for the images) with gr.Row(): raw_img = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) # Smaller image size embeddings_img = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) # Smaller image size # Trigger image updates when inputs change percentage_slider.change(fn=display_images, inputs=[percentage_slider, complexity_slider], outputs=[raw_img, embeddings_img]) complexity_slider.change(fn=display_images, inputs=[percentage_slider, complexity_slider], outputs=[raw_img, embeddings_img]) # Launch the app if __name__ == "__main__": demo.launch()