Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,14 +7,16 @@ import io
|
|
| 7 |
import sys
|
| 8 |
import torch
|
| 9 |
import subprocess
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Paths to the predefined images folder
|
| 12 |
RAW_PATH = os.path.join("images", "raw")
|
| 13 |
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
|
| 14 |
|
| 15 |
-
# Specific values for percentage
|
| 16 |
percentage_values = [10, 30, 50, 70, 100]
|
| 17 |
-
complexity_values = [16, 32]
|
| 18 |
|
| 19 |
# Custom class to capture print output
|
| 20 |
class PrintCapture(io.StringIO):
|
|
@@ -30,11 +32,10 @@ class PrintCapture(io.StringIO):
|
|
| 30 |
return ''.join(self.output)
|
| 31 |
|
| 32 |
# Function to load and display predefined images based on user selection
|
| 33 |
-
def display_predefined_images(percentage_idx
|
| 34 |
percentage = percentage_values[percentage_idx]
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
| 38 |
|
| 39 |
raw_image = Image.open(raw_image_path)
|
| 40 |
embeddings_image = Image.open(embeddings_image_path)
|
|
@@ -62,8 +63,57 @@ def load_module_from_path(module_name, file_path):
|
|
| 62 |
spec.loader.exec_module(module)
|
| 63 |
return module
|
| 64 |
|
| 65 |
-
# Function to
|
| 66 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
capture = PrintCapture()
|
| 68 |
sys.stdout = capture # Redirect print statements to capture
|
| 69 |
|
|
@@ -90,51 +140,42 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 90 |
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
|
| 91 |
inference_path = os.path.join(os.getcwd(), 'inference.py')
|
| 92 |
|
| 93 |
-
print(lwm_model_path)
|
| 94 |
-
print(input_preprocess_path)
|
| 95 |
-
print(inference_path)
|
| 96 |
-
|
| 97 |
# Load lwm_model
|
| 98 |
-
|
| 99 |
-
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
|
| 100 |
-
else:
|
| 101 |
-
return f"Error: lwm_model.py not found at {lwm_model_path}"
|
| 102 |
|
| 103 |
# Load input_preprocess
|
| 104 |
-
|
| 105 |
-
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
|
| 106 |
-
else:
|
| 107 |
-
return f"Error: input_preprocess.py not found at {input_preprocess_path}"
|
| 108 |
|
| 109 |
# Load inference
|
| 110 |
-
|
| 111 |
-
inference = load_module_from_path("inference", inference_path)
|
| 112 |
-
else:
|
| 113 |
-
return f"Error: inference.py not found at {inference_path}"
|
| 114 |
|
| 115 |
# Step 4: Load the model from lwm_model module
|
| 116 |
device = 'cpu'
|
| 117 |
print(f"Loading the LWM model on {device}...")
|
| 118 |
model = lwm_model.LWM.from_pretrained(device=device)
|
| 119 |
|
| 120 |
-
# Step 5:
|
| 121 |
-
with
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
|
|
|
|
| 125 |
|
| 126 |
-
# Step
|
| 127 |
-
|
| 128 |
-
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
|
|
|
| 132 |
|
| 133 |
-
# Step
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
-
return
|
| 138 |
|
| 139 |
except Exception as e:
|
| 140 |
return str(e), str(e), capture.get_output()
|
|
@@ -143,11 +184,11 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 143 |
sys.stdout = sys.__stdout__ # Reset print statements
|
| 144 |
|
| 145 |
# Function to handle logic based on whether a file is uploaded or not
|
| 146 |
-
def los_nlos_classification(file, percentage_idx
|
| 147 |
if file is not None:
|
| 148 |
-
return
|
| 149 |
else:
|
| 150 |
-
return display_predefined_images(percentage_idx
|
| 151 |
|
| 152 |
# Define the Gradio interface
|
| 153 |
with gr.Blocks(css="""
|
|
@@ -183,38 +224,30 @@ with gr.Blocks(css="""
|
|
| 183 |
with gr.Column(elem_id="slider-container"):
|
| 184 |
gr.Markdown("Percentage of Data for Training")
|
| 185 |
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
| 186 |
-
with gr.Column(elem_id="slider-container"):
|
| 187 |
-
gr.Markdown("Task Complexity")
|
| 188 |
-
complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
| 189 |
|
| 190 |
with gr.Row():
|
| 191 |
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
|
| 192 |
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
| 193 |
|
| 194 |
-
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp
|
| 195 |
-
complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
|
| 196 |
|
| 197 |
with gr.Tab("LoS/NLoS Classification Task"):
|
| 198 |
gr.Markdown("### LoS/NLoS Classification Task")
|
| 199 |
|
| 200 |
-
file_input = gr.File(label="Upload
|
| 201 |
|
| 202 |
with gr.Row():
|
| 203 |
with gr.Column(elem_id="slider-container"):
|
| 204 |
gr.Markdown("Percentage of Data for Training")
|
| 205 |
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
| 206 |
-
with gr.Column(elem_id="slider-container"):
|
| 207 |
-
gr.Markdown("Task Complexity")
|
| 208 |
-
complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
| 209 |
|
| 210 |
with gr.Row():
|
| 211 |
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
|
| 212 |
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
| 213 |
output_textbox = gr.Textbox(label="Console Output", lines=10)
|
| 214 |
|
| 215 |
-
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los
|
| 216 |
-
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los
|
| 217 |
-
complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
| 218 |
|
| 219 |
# Launch the app
|
| 220 |
if __name__ == "__main__":
|
|
|
|
| 7 |
import sys
|
| 8 |
import torch
|
| 9 |
import subprocess
|
| 10 |
+
import h5py
|
| 11 |
+
from sklearn.metrics import confusion_matrix
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
|
| 14 |
# Paths to the predefined images folder
|
| 15 |
RAW_PATH = os.path.join("images", "raw")
|
| 16 |
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
|
| 17 |
|
| 18 |
+
# Specific values for percentage of data for training
|
| 19 |
percentage_values = [10, 30, 50, 70, 100]
|
|
|
|
| 20 |
|
| 21 |
# Custom class to capture print output
|
| 22 |
class PrintCapture(io.StringIO):
|
|
|
|
| 32 |
return ''.join(self.output)
|
| 33 |
|
| 34 |
# Function to load and display predefined images based on user selection
|
| 35 |
+
def display_predefined_images(percentage_idx):
|
| 36 |
percentage = percentage_values[percentage_idx]
|
| 37 |
+
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png") # Assume complexity 16 for simplicity
|
| 38 |
+
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
|
|
|
|
| 39 |
|
| 40 |
raw_image = Image.open(raw_image_path)
|
| 41 |
embeddings_image = Image.open(embeddings_image_path)
|
|
|
|
| 63 |
spec.loader.exec_module(module)
|
| 64 |
return module
|
| 65 |
|
| 66 |
+
# Function to split dataset into training and test sets based on user selection
|
| 67 |
+
def split_dataset(channels, labels, percentage_idx):
|
| 68 |
+
percentage = percentage_values[percentage_idx] / 100
|
| 69 |
+
num_samples = channels.shape[0]
|
| 70 |
+
train_size = int(num_samples * percentage)
|
| 71 |
+
print(f'Number of Training Samples: {train_size}')
|
| 72 |
+
|
| 73 |
+
indices = np.arange(num_samples)
|
| 74 |
+
np.random.shuffle(indices)
|
| 75 |
+
|
| 76 |
+
train_idx, test_idx = indices[:train_size], indices[train_size:]
|
| 77 |
+
|
| 78 |
+
train_data, test_data = channels[train_idx], channels[test_idx]
|
| 79 |
+
train_labels, test_labels = labels[train_idx], labels[test_idx]
|
| 80 |
+
|
| 81 |
+
return train_data, test_data, train_labels, test_labels
|
| 82 |
+
|
| 83 |
+
# Function to calculate Euclidean distance between a point and a centroid
|
| 84 |
+
def euclidean_distance(x, centroid):
|
| 85 |
+
return np.linalg.norm(x - centroid)
|
| 86 |
+
|
| 87 |
+
# Function to classify test data based on distance to class centroids
|
| 88 |
+
def classify_based_on_distance(train_data, train_labels, test_data):
|
| 89 |
+
centroid_0 = np.mean(train_data[train_labels == 0], axis=0)
|
| 90 |
+
centroid_1 = np.mean(train_data[train_labels == 1], axis=0)
|
| 91 |
+
|
| 92 |
+
predictions = []
|
| 93 |
+
for test_point in test_data:
|
| 94 |
+
dist_0 = euclidean_distance(test_point, centroid_0)
|
| 95 |
+
dist_1 = euclidean_distance(test_point, centroid_1)
|
| 96 |
+
predictions.append(0 if dist_0 < dist_1 else 1)
|
| 97 |
+
|
| 98 |
+
return np.array(predictions)
|
| 99 |
+
|
| 100 |
+
# Function to generate confusion matrix plot
|
| 101 |
+
def plot_confusion_matrix(y_true, y_pred, title):
|
| 102 |
+
cm = confusion_matrix(y_true, y_pred)
|
| 103 |
+
plt.figure(figsize=(5, 5))
|
| 104 |
+
plt.imshow(cm, cmap='Blues')
|
| 105 |
+
plt.title(title)
|
| 106 |
+
plt.xlabel('Predicted')
|
| 107 |
+
plt.ylabel('Actual')
|
| 108 |
+
plt.colorbar()
|
| 109 |
+
plt.xticks([0, 1], labels=[0, 1])
|
| 110 |
+
plt.yticks([0, 1], labels=[0, 1])
|
| 111 |
+
plt.tight_layout()
|
| 112 |
+
plt.savefig(f"{title}.png")
|
| 113 |
+
return Image.open(f"{title}.png")
|
| 114 |
+
|
| 115 |
+
# Function to process the uploaded HDF5 file and perform classification using the custom model
|
| 116 |
+
def process_hdf5_file(uploaded_file, percentage_idx):
|
| 117 |
capture = PrintCapture()
|
| 118 |
sys.stdout = capture # Redirect print statements to capture
|
| 119 |
|
|
|
|
| 140 |
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
|
| 141 |
inference_path = os.path.join(os.getcwd(), 'inference.py')
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
# Load lwm_model
|
| 144 |
+
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# Load input_preprocess
|
| 147 |
+
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
# Load inference
|
| 150 |
+
inference = load_module_from_path("inference", inference_path)
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
# Step 4: Load the model from lwm_model module
|
| 153 |
device = 'cpu'
|
| 154 |
print(f"Loading the LWM model on {device}...")
|
| 155 |
model = lwm_model.LWM.from_pretrained(device=device)
|
| 156 |
|
| 157 |
+
# Step 5: Load the HDF5 file and extract the channels and labels
|
| 158 |
+
with h5py.File(uploaded_file.name, 'r') as f:
|
| 159 |
+
channels = np.array(f['channels']) # Assuming 'channels' dataset in the HDF5 file
|
| 160 |
+
labels = np.array(f['labels']) # Assuming 'labels' dataset in the HDF5 file
|
| 161 |
+
print(f"Loaded dataset with {channels.shape[0]} samples.")
|
| 162 |
|
| 163 |
+
# Step 6: Split the dataset into training and test sets
|
| 164 |
+
train_data_raw, test_data_raw, train_labels, test_labels = split_dataset(channels, labels, percentage_idx)
|
| 165 |
|
| 166 |
+
# Step 7: Tokenize the data using the tokenizer from input_preprocess
|
| 167 |
+
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
|
| 168 |
+
train_data_emb, test_data_emb, _, _ = split_dataset(preprocessed_chs, labels, percentage_idx)
|
| 169 |
|
| 170 |
+
# Step 8: Perform classification using the Euclidean distance for both raw and embeddings
|
| 171 |
+
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
|
| 172 |
+
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
|
| 173 |
|
| 174 |
+
# Step 9: Generate confusion matrices for both raw and embeddings
|
| 175 |
+
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
|
| 176 |
+
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
|
| 177 |
|
| 178 |
+
return raw_cm_image, emb_cm_image, capture.get_output()
|
| 179 |
|
| 180 |
except Exception as e:
|
| 181 |
return str(e), str(e), capture.get_output()
|
|
|
|
| 184 |
sys.stdout = sys.__stdout__ # Reset print statements
|
| 185 |
|
| 186 |
# Function to handle logic based on whether a file is uploaded or not
|
| 187 |
+
def los_nlos_classification(file, percentage_idx):
|
| 188 |
if file is not None:
|
| 189 |
+
return process_hdf5_file(file, percentage_idx)
|
| 190 |
else:
|
| 191 |
+
return display_predefined_images(percentage_idx), None
|
| 192 |
|
| 193 |
# Define the Gradio interface
|
| 194 |
with gr.Blocks(css="""
|
|
|
|
| 224 |
with gr.Column(elem_id="slider-container"):
|
| 225 |
gr.Markdown("Percentage of Data for Training")
|
| 226 |
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
with gr.Row():
|
| 229 |
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
|
| 230 |
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
| 231 |
|
| 232 |
+
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
|
|
|
|
| 233 |
|
| 234 |
with gr.Tab("LoS/NLoS Classification Task"):
|
| 235 |
gr.Markdown("### LoS/NLoS Classification Task")
|
| 236 |
|
| 237 |
+
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
|
| 238 |
|
| 239 |
with gr.Row():
|
| 240 |
with gr.Column(elem_id="slider-container"):
|
| 241 |
gr.Markdown("Percentage of Data for Training")
|
| 242 |
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
with gr.Row():
|
| 245 |
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
|
| 246 |
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
| 247 |
output_textbox = gr.Textbox(label="Console Output", lines=10)
|
| 248 |
|
| 249 |
+
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
| 250 |
+
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
|
|
|
| 251 |
|
| 252 |
# Launch the app
|
| 253 |
if __name__ == "__main__":
|